Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
2.
Med Phys ; 47(11): 5455-5466, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32996591

ABSTRACT

PURPOSE: MRI is the gold-standard imaging modality for brain tumor diagnosis and delineation. The purpose of this work was to investigate the feasibility of performing brain stereotactic radiosurgery (SRS) with a 0.35 T MRI-guided linear accelerator (MRL) equipped with a double-focused multileaf collimator (MLC). Dosimetric comparisons were made vs a conventional C-arm-mounted linac with a high-definition MLC. METHODS: The quality of MRL single-isocenter brain SRS treatment plans was evaluated as a function of target size for a series of spherical targets with diameters from 0.6 cm to 2.5 cm in an anthropomorphic head phantom and six brain metastases (max linear dimension = 0.7-1.9 cm) previously treated at our clinic on a conventional linac. Each target was prescribed 20 Gy to 99% of the target volume. Step-and-shoot IMRT plans were generated for the MRL using 11 static coplanar beams equally spaced over 360° about an isocenter placed at the center of the target. Couch and collimator angles are fixed for the MRL. Two MRL planning strategies (VR1 and VR2) were investigated. VR1 minimized the 12 Gy isodose volume while constraining the maximum point dose to be within ±1 Gy of 25 Gy which corresponded to normalization to an 80% isodose volume. VR2 minimized the 12 Gy isodose volume without the maximum dose constraint. For the conventional linac, the TB1 method followed the same strategy as VR1 while TB2 used five noncoplanar dynamic conformal arcs. Plan quality was evaluated in terms of conformity index (CI), conformity/gradient index (CGI), homogeneity index (HI), and volume of normal brain receiving ≥12 Gy (V12Gy ). Quality assurance measurements were performed with Gafchromic EBT-XD film following an absolute dose calibration protocol. RESULTS: For the phantom study, the CI of MRL plans was not significantly different compared to a conventional linac (P > 0.05). The use of dynamic conformal arcs and noncoplanar beams with a conventional linac spared significantly more normal brain (P = 0.027) and maximized the CGI, as expected. The mean CGI was 95.9 ± 4.5 for TB2 vs 86.6 ± 3.7 (VR1), 88.2 ± 4.8 (VR2), and 88.5 ± 5.9 (TB1). Each method satisfied a normal brain V12Gy  ≤ 10.0 cm3 planning goal for targets with diameter ≤2.25 cm. The mean V12Gy was 3.1 cm3 for TB2 vs 5.5 cm3 , 5.0 cm3 and 4.3 cm3 , for VR1, VR2, and TB1, respectively. For a 2.5-cm diameter target, only TB2 met the V12Gy planning objective. The MRL clinical brain plans were deemed acceptable for patient treatment. The normal brain V12Gy was ≤6.0 cm3 for all clinical targets (maximum target volume = 3.51 cm3 ). CI and CGI ranged from 1.12-1.65 and 81.2-88.3, respectively. Gamma analysis pass rates (3%/1mm criteria) exceeded 97.6% for six clinical targets planned and delivered on the MRL. The mean measured vs computed absolute dose difference was -0.1%. CONCLUSIONS: The MRL system can produce clinically acceptable brain SRS plans for spherical lesions with diameter ≤2.25 cm. Large lesions (>2.25 cm) should be treated with a linac capable of delivering noncoplanar beams.


Subject(s)
Brain Neoplasms , Radiosurgery , Brain/diagnostic imaging , Brain/surgery , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/radiotherapy , Brain Neoplasms/surgery , Feasibility Studies , Humans , Magnetic Resonance Imaging , Particle Accelerators , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
3.
J Appl Clin Med Phys ; 21(1): 53-61, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31738473

ABSTRACT

PURPOSE: In this work, we investigated the effect on the workflow and setup accuracy of using surface guided radiation therapy (SGRT) for patient setup, megavoltage cone beam CT (MVCBCT) or kilovoltage cone beam CT (kVCBCT) for imaging and fixed IMRT or volumetric-modulated arc therapy (VMAT) for treatment delivery with the Halcyon linac. METHODS: We performed a retrospective investigation of 272 treatment fractions, using three different workflows. The first and second workflows used MVCBCT and fixed IMRT for imaging and treatment delivery, and the second one also used SGRT for patient setup. The third workflow used SGRT for setup, kVCBCT for imaging and VMAT for delivery. Workflows were evaluated by comparing the number of fractions requiring repeated imaging acquisitions and the time required for setup, imaging and treatment delivery. Setup position accuracy was assessed by comparing the daily kV- or MV- CBCT with the planning CT and measuring the residual rotational errors for pitch, yaw and roll angles. RESULTS: Without the use of SGRT, the imaging fields were delivered more than once on 11.1% of the fractions, while re-imaging was necessary in 5.5% of the fractions using SGRT. The total treatment time, including setup, imaging, and delivery, for the three workflows was 531 ± 157 s, 503 ± 130 s and 457 ± 91 s, respectively. A statistically significant difference was observed when comparing the third workflow with the first two. The total residual rotational errors were 1.96 ± 1.29°, 1.28 ± 0.67° and 1.22 ± 0.76° and statistically significant differences were observed when comparing workflows with and without SGRT. CONCLUSIONS: The use of SGRT allowed for a reduction of re-imaging during patient setup and improved patient position accuracy by reducing residual rotational errors. A reduction in treatment time using kVCBCT with SGRT was observed. The most efficient workflow was the one including kVCBCT and SGRT for setup and VMAT for delivery.


Subject(s)
Brain Neoplasms/radiotherapy , Cone-Beam Computed Tomography/methods , Patient Positioning/methods , Phantoms, Imaging , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Setup Errors/prevention & control , Radiotherapy, Image-Guided/methods , Humans , Image Processing, Computer-Assisted/methods , Particle Accelerators , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated , Retrospective Studies
4.
J Appl Clin Med Phys ; 20(7): 58-67, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31183967

ABSTRACT

PURPOSE: To investigate the plan quality and doses to the heart, contralateral breast (CB), ipsilateral lung (IL), and contralateral lung (CL) in tangential breast treatments using the Halcyon linac with megavoltage setup fields. METHODS: Radiotherapy treatment plans with tangential beams from 25 breast cancer patients previously treated on a C-arm linac were replanned for Halcyon. Thirteen corresponded to right-sided breasts and 12 to left-sided breasts, all with a dose prescription of 50 Gy in 25 fractions. Plans were created with the following setup imaging techniques: low-dose (LD) MVCBCT, high-quality (HQ) MVCBCT, LD-MV and HQ-MV pairs and the imaging dose was included in the plans. Plan quality metric values for the lumpectomy cavity, whole-breast and doses to the organs at risk (OARs) were measured and compared with those from the original plans. RESULTS: No significant differences in plan quality were observed between the original and Halcyon plans. An increase in the mean dose (Mean) for all the organs was observed for the Halcyon plans. For right-sided plans, the accumulated Mean over the 25 fractions in the C-arm plans was 0.4 ± 0.3, 0.2 ± 0.2, 5.4 ± 1.3, and 0.1 ± 0.1 Gy for the heart, CB, IL, and CL, respectively, while values in the MVCBCT-LD Halcyon plans were 1.2 ± 0.2, 0.6 ± 0.1, 6.5 ± 1.4, and 0.4 ± 0.1 Gy, respectively. For left-sided treatments, Mean in the original plans was 0.9 ± 0.2, 0.1 ± 0.0, 4.2 ± 1.2, and 0.0 ± 0.0 Gy, while for the MVCBCT-LD Halcyon plans values were 1.9 ± 0.2, 0.6 ± 0.2, 5.1 ± 1.2, and 0.5 ± 0.2 Gy, respectively. CONCLUSIONS: Plan quality for breast treatments using Halcyon is similar to the quality for a 6 MV, C-arm plan. For treatments using megavoltage setup fields, the dose contribution to OARs from the imaging fields can be equal or higher than the dose from treatment fields.


Subject(s)
Breast Neoplasms/radiotherapy , Heart/radiation effects , Lung/radiation effects , Mastectomy, Segmental/methods , Organs at Risk/radiation effects , Particle Accelerators/instrumentation , Radiotherapy Planning, Computer-Assisted/methods , Breast Neoplasms/pathology , Breast Neoplasms/surgery , Female , Humans , Prognosis , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/methods
5.
J Appl Clin Med Phys ; 20(4): 106-114, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30889312

ABSTRACT

PURPOSE: To characterize the stacked and staggered dual-layer multileaf collimator (MLC) on the HalcyonTM system. METHODS: The novel MLC assembly was reviewed and compared to the widely used MillenniumTM 120-leaf MLC system. We investigated the MLC positioning stability over 70 days using Machine Performance Check (MPC) data. We evaluated the leaf transmission, penumbra, leaf end effect, and leaf edge effect. Leaf transmission through distal, proximal, and both MLC layers was measured with a Farmer chamber, by comparing an open and a closed field. Leaf penumbra was measured using film for three different MLC-defined field sizes. The leaf end effect was measured with sweeping gap fields of varying gap sizes defined by the distal MLC. The leaf edge effect was evaluated using the Electronic Portal Imaging Device (EPID) for the different banks, gantry positions, and collimator angles. Point dose measurements for 10 test plans were compared to dose predictions of two dose calculation model versions. RESULTS: From MPC data, the largest measured MLC positioning accuracy deviation was within 0.1 mm. The proximal MLC exhibited greater deviations compared to the distal MLC. The distal-and-proximal-combination had reduced inter-leaf and intra-leaf transmission compared to delivery with distal-only. The measured leaf transmission was 0.41% for distal-only, 0.40% for proximal-only, and negligible for distal-and-proximal-combination. The leaf end penumbra was wider compared to the leaf edge penumbra. The leaf end effect was measured to be -0.2 mm. The leaf edge effect showed minimal bank, gantry position, and collimator angle dependence. However, a systematic deviation between measurements and treatment planning system handling of the leaf edge effect was observed. The discrepancy between the measured and predicted dose in the 10 test plans improved with the latest version of the dose calculation algorithm. CONCLUSION: The characteristics of the stacked and staggered dual-layer MLC on the HalcyonTM system were presented.


Subject(s)
Algorithms , Neoplasms/radiotherapy , Particle Accelerators/instrumentation , Phantoms, Imaging , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/instrumentation , Humans , Organs at Risk/radiation effects , Radiometry , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/methods
6.
J Appl Clin Med Phys ; 19(4): 98-102, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29785729

ABSTRACT

Halcyon™ is a single-energy (6 MV-FFF), bore-enclosed linear accelerator. Patient setup is performed by first aligning to external lasers mounted to the front of the bore, and then loading to isocenter through pre-defined couch shifts. There is no light field, optical distance indicator or front pointer mechanism, so positioning is verified through MV imaging with kV imaging scheduled to become available in the future. TG-51 reference dosimetry was successfully performed for Halcyon™ in this imaging-based setup paradigm. The beam quality conversion factor, kQ , was determined by measuring %dd(10)x three ways: (a) using a Farmer chamber with lead filtering, (b) using a Farmer chamber without lead filtering, and (c) using a PinPoint chamber without lead filtering. Values of kQ were determined to be 0.995, 0.996, and 0.996 by each measurement technique, respectively. Halcyon™'s 6 MV-FFF beam was found to be broader than other FFF beams produced by Varian accelerators, and profile measurements at dmax showed the beam to vary less than 0.5% over the dimensions of our Farmer chamber's active volume. Reference dosimetry can be performed for the Halcyon™ accelerator simply, without specialized equipment or lead filtering with minimal dosimetric impact. This simplicity will prove advantageous in clinics with limited resources or physics support.


Subject(s)
Radiometry , Particle Accelerators , Phenylpropionates , Photons
7.
Rev Sci Instrum ; 87(11): 114301, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27910378

ABSTRACT

The quantity of relevance for external beam radiotherapy is absorbed dose to water (ADW). An interferometer was built, characterized, and tested to measure ADW within the dose range of interest for external beam radiotherapy using the temperature dependence of the refractive index of water. The interferometer was used to measure radiation-induced phase shifts of a laser beam passing through a (10 × 10 × 10) cm3 water-filled glass phantom, irradiated with a 6 MV photon beam from a medical linear accelerator. The field size was (7 × 7) cm2 and the dose was measured at a depth of 5 cm in the water phantom. The intensity of the interference pattern was measured with a photodiode and was used to calculate the time-dependent phase shift curve. The system was thermally insulated to achieve temperature drifts of less than 1.5 mK/min. Data were acquired 60 s before and after the irradiation. The radiation-induced phase shifts were calculated by taking the difference in the pre- and post-irradiation drifts extrapolated to the midpoint of the irradiation. For 200, 300, and 400 monitor units, the measured doses were 1.6 ± 0.3, 2.6 ± 0.3, and 3.1 ± 0.3 Gy, respectively. Measurements agreed within the uncertainty with dose calculations performed with a treatment planning system. The estimated type-A, k = 1 uncertainty in the measured doses was 0.3 Gy which is an order of magnitude lower than previously published interferometer-based ADW measurements.

SELECTION OF CITATIONS
SEARCH DETAIL
...