Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Life Sci ; 333: 122167, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37827231

ABSTRACT

The male gamete is a highly differentiated cell that aims to fuse with the oocyte in fertilization. Sperm have silenced the transcription and translational processes, maintaining proteostasis to guarantee male reproductive health. Despite the information about the implication of molecular chaperones as orchestrators of protein folding or aggregation, and the handling of body homeostasis by the endocannabinoid system, there is still a lack of basic investigation and random controlled clinical trials that deliver more evidence on the involvement of cannabinoids in reproductive function. Besides, we noticed that the information regarding whether recreational marijuana affects male fertility is controversial and requires further investigation. In other cell models, it has recently been evidenced that chaperones and cannabinoids are intimately intertwined. Through a literature review, we aim to explore the interaction between chaperones and cannabinoid signaling in sperm development and function. To untangle how or whether this dialogue happens within the sperm proteostasis. We discuss the action of chaperones, the endocannabinoid system and phytocannabinoids in sperm proteostasis. Reports of some heat shock and lipid proteins interacting with cannabinoid receptors prove that chaperones and the endocannabinoid system are in an intimate dialogue. Meanwhile, advancing the evidence to decipher these mechanisms for introducing innovative interventions into routine clinical settings becomes crucial. We highlight the potential interaction between chaperones and cannabinoid signaling in regulating proteostasis in male reproductive health.


Subject(s)
Cannabinoids , Proteostasis , Endocannabinoids/metabolism , Seeds , Molecular Chaperones/metabolism , Spermatozoa/metabolism , Cannabinoids/metabolism
2.
Biol Reprod ; 108(2): 229-240, 2023 02 13.
Article in English | MEDLINE | ID: mdl-36308432

ABSTRACT

Membrane fusion in sperm cells is crucial for acrosomal exocytosis and must be preserved to ensure fertilizing capacity. Evolutionarily conserved protein machinery regulates acrosomal exocytosis. Molecular chaperones play a vital role in spermatogenesis and post-testicular maturation. Cysteine string protein (CSP) is a member of the Hsp40 co-chaperones, and the participation of molecular chaperones in acrosomal exocytosis is poorly understood. In particular, the role of CSP in acrosomal exocytosis has not been reported so far. Using western blot and indirect immunofluorescence, we show that CSP is present in human sperm, is palmitoylated, and predominantly bound to membranes. Moreover, using functional assays and transmission electron microscopy, we report that blocking the function of CSP avoided the assembly of trans-complexes and inhibited exocytosis. In summary, here, we describe the presence of CSP in human sperm and show that this protein has an essential role in membrane fusion during acrosomal exocytosis mediating the trans-SNARE complex assembly between the outer acrosomal and plasma membranes. In general, understanding CSP's role is critical in identifying new biomarkers and generating new rational-based approaches to treat male infertility.


Subject(s)
Acrosome , SNARE Proteins , Humans , Male , Acrosome/metabolism , Exocytosis/physiology , Semen/metabolism , SNARE Proteins/metabolism , Spermatozoa/metabolism
3.
AMB Express ; 7(1): 67, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28324615

ABSTRACT

We propose an alternative GMO based strategy to obtain Saccharomyces cerevisiae mutant strains with a slight reduction in their ability to produce ethanol, but with a moderate impact on the yeast metabolism. Through homologous recombination, two truncated Pdc2p proteins Pdc2pΔ344 and Pdc2pΔ519 were obtained and transformed into haploid and diploid lab yeast strains. In the pdc2Δ344 mutants the DNA-binding and transactivation site of the protein remain intact, whereas in pdc2Δ519 only the DNA-binding site is conserved. Compared to the control, the diploid BY4743pdc2Δ519 mutant strain reduced up to 7.4% the total ethanol content in lab scale-vinifications. The residual sugar and volatile acidity was not significantly affected by this ethanol reduction. Remarkably, we got a much higher ethanol reduction of 10 and 15% when the pdc2Δ519 mutation was tested in a native and a commercial wine yeast strain against their respective controls. Our results demonstrate that the insertion of the pdc2Δ519 mutation in wine yeast strains can reduce the ethanol concentration up to 1.89% (v/v) without affecting the fermentation performance. In contrast to non-GMO based strategies, our approach permits the insertion of the pdc2Δ519 mutation in any locally selected wine strain, making possible to produce quality wines with regional characteristics and lower alcohol content. Thus, we consider our work a valuable contribution to the problem of high ethanol concentration in wine.

SELECTION OF CITATIONS
SEARCH DETAIL
...