Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Appl Pharmacol ; 487: 116955, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38710373

ABSTRACT

Lung cancer is one of the most aggressive malignancies with a high mortality rate. In large cities, particulate matter (PM) is a common air pollutant. High PM levels with aerodynamic size ≤2.5 µm (PM2.5) associates with lung cancer incidence and mortality. In this work, we explored PM2.5 effects on the behavior of lung cancer cells. To this, we chronically exposed A549 cells to increasing PM2.5 concentrations collected in México City, then evaluating cell proliferation, chemoresponse, migration, invasion, spheroid formation, and P-glycoprotein and N-cadherin expression. Chronic PM2.5 exposure from 1 µg/cm2 stimulated A549 cell proliferation, migration, and chemoresistance and upregulated P-glycoprotein and N-cadherin expression. PM2.5 also induced larger multicellular tumor spheroids (MCTS) and less disintegration compared with control cells. Therefore, these results indicate lung cancer patients exposed to airborne PM2.5 as urban pollutant could develop more aggressive tumor phenotypes, with increased cell proliferation, migration, and chemoresistance.


Subject(s)
Air Pollutants , Cell Movement , Cell Proliferation , Drug Resistance, Neoplasm , Lung Neoplasms , Particulate Matter , Humans , Particulate Matter/toxicity , Drug Resistance, Neoplasm/drug effects , Lung Neoplasms/pathology , Lung Neoplasms/chemically induced , Lung Neoplasms/metabolism , A549 Cells , Cell Proliferation/drug effects , Cell Movement/drug effects , Air Pollutants/toxicity , Phenotype , Cadherins/metabolism , Particle Size , Mexico , Spheroids, Cellular/drug effects , Neoplasm Invasiveness , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Antigens, CD/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...