Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Publication year range
1.
Exp Mol Pathol ; 89(2): 190-6, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20599941

ABSTRACT

During carcinogenesis it is known that growth factors and cytokines from stromal and inflammatory cells from the microenvironment promote angiogenesis and lymphangiogenesis. However, the participation of macrophages and mast cells in these processes is not well understood. The aim of this study was to evaluate the relationship between mast cell and macrophage density with blood and lymphatic vessels in various stages of carcinoma of the uterine cervix. Tissue sections from archival paraffin-embedded samples from cases with cervical intraepithelial neoplasias (CIN) 1, 2, 3, carcinoma in situ, and invasive carcinoma were used. Immunohistochemical staining was done using the following antibodies: anti-LYVE-1; anti-CD31; anti-CD68, and anti-tryptase. Our results showed a significant increase in the number of macrophages in carcinoma in situ, a correlation between lymphatic vessels and macrophages in premalignant lesions CIN 2, and a correlation between mast cells and blood vessels in both CIN 2 and carcinoma in situ. In conclusion, our data underscore the importance of the recruitment of macrophages and mast cells in the development of tumor-associated blood and lymphatic capillaries.


Subject(s)
Carcinoma in Situ/immunology , Lymphangiogenesis/immunology , Macrophages/immunology , Mast Cells/immunology , Neovascularization, Pathologic/immunology , Uterine Cervical Dysplasia/immunology , Uterine Cervical Neoplasms/immunology , Uterine Cervical Neoplasms/pathology , Antigens, CD , Antigens, Differentiation, Myelomonocytic , Carcinoma in Situ/pathology , Case-Control Studies , Female , Humans , Macrophages/metabolism , Mast Cells/metabolism , Uterine Cervical Neoplasms/blood supply , Uterine Cervical Dysplasia/pathology
2.
Gac Med Mex ; 145(2): 131-42, 2009.
Article in Spanish | MEDLINE | ID: mdl-19518020

ABSTRACT

Invasion and metastasis are the most important events in cancer progression. In these two phases, several molecules are implicated and have been long associated with several forms of cancer. Proteases play a critical role not only in tumor cell invasion, but also in the earliest stages of carcinogenesis and its associated changes: angiogenesis and metastasis. Aside from their ability to degrade the extracellular matrix, facilitate invasion and metastasis, proteases target a great variety of substrates that favor or inhibit cancer progression: b-FGF, HGF, VEGF, cell death receptors, cistatin-C, galectin, procollagen, and other proteases. Proteases are also signaling molecules that modulate other molecules by underlying pathways in addition to their degradative role. Proteases form interconnected cascades, circuits and networks that bring about the tumor's potential for malignancy. Although, proteases are regulated by diverse molecules, it is known that tumoral and stromal cells secrete several biological molecules, including cytokines and chemokines that directly or indirectly regulate the protease-expression within the tumor's microenvironment. The present review briefly summarizes some of the major aspects associated with the role of proteases in cancer progression.


Subject(s)
Neoplasms/enzymology , Peptide Hydrolases/physiology , Animals , Basement Membrane/physiology , Extracellular Matrix/physiology , Humans , Neovascularization, Pathologic
3.
Gac. méd. Méx ; 145(2): 131-142, mar.-abr. 2009. ilus, tab
Article in Spanish | LILACS | ID: lil-567520

ABSTRACT

La invasión y la metástasis son los eventos más importantes en la progresión del cáncer, en los cuales están implicadas muchas moléculas, entre ellas, las proteasas. Éstas desempeñan un papel importante en etapas tempranas de la carcinogénesis, en la invasión, en fenómenos asociados como la angiogénesis y en la metástasis, principalmente por su capacidad para degradar componentes de la matriz extracelular, aunque sus sustratos son de naturaleza diversa: citocinas, quimiocinas, factores de crecimiento (b- FGF, HGF, VEGF) y de muerte celular, cistatina-C, galectina, procolágena y otras proteasas, que pueden favorecer o inhibir la progresión neoplásica. Las proteasas son también moléculas de señalización que modulan a otras moléculas; forman cascadas, circuitos e incluso redes, que en conjunto determinan parte del potencial maligno. Se sabe que tanto la célula tumoral como las del estroma secretan diversos factores que regulan directa e indirectamente la expresión de proteasas en el microambiente tumoral. Esta revisión proporciona un panorama breve y actualizado sobre la participación de las proteasas en la progresión neoplásica.


Invasion and metastasis are the most important events in cancer progression. In these two phases, several molecules are implicated and have been long associated with several forms of cancer. Proteases play a critical role not only in tumor cell invasion, but also in the earliest stages of carcinogenesis and its associated changes: angiogenesis and metastasis. Aside from their ability to degrade the extracellular matrix, facilitate invasion and metastasis, proteases target a great variety of substrates that favor or inhibit cancer progression: b-FGF, HGF, VEGF, cell death receptors, cistatin-C, galectin, procollagen, and other proteases. Proteases are also signaling molecules that modulate other molecules by underlying pathways in addition to their degradative role. Proteases form interconnected cascades, circuits and networks that bring about the tumor's potential for malignancy. Although, proteases are regulated by diverse molecules, it is known that tumoral and stromal cells secrete several biological molecules, including cytokines and chemokines that directly or indirectly regulate the protease-expression within the tumor's microenvironment. The present review briefly summarizes some of the major aspects associated with the role of proteases in cancer progression.


Subject(s)
Humans , Animals , Neoplasms/enzymology , Peptide Hydrolases/physiology , Extracellular Matrix/physiology , Basement Membrane/physiology , Neovascularization, Pathologic
SELECTION OF CITATIONS
SEARCH DETAIL
...