Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37556064

ABSTRACT

The present work studied individual and binary adsorption of fluorides and As(V) in water on pleco fish bone chars (BC), as well as the effect of BC mass variation on the adsorption capacity of fluoride and As(V) in water for human consumption. The results of individual adsorption indicated that the adsorption of fluoride and As(V) on BC depends on solution pH. The adsorption capacity of fluorides at an initial concentration of 30 mg L-1 increases approximately 3 times, from 5.9 to 15.3 mg g-1, when decreasing the pH of the solution from 9 to 5, however, for the case of As(V) an antagonistic effect is observed, the adsorption capacity increases 7 times when raising the pH from 5 to 9, from 18.4 to 132.1 µg g-1 at an initial As(V) concentration of 300 µg L-1. Besides, in the binary adsorption, BC showed a higher affinity to adsorb fluoride since its adsorption capacity decreased from 16.55 to 12.50 mg g-1 as the As(V) concentration increased from 0 to 800 µg L-1 in solution. In contrast, As(V) adsorption was severely affected, decreasing from 140.2 to 32.7 µg g-1 when the fluoride concentration in the solution increased from 0 to 100 mg L-1. On the other hand, in the adsorption of groundwater contaminated with fluoride and As(V), it was determined that increasing the mass of BC from 0.5 to 20 g increases the removal percentage, reaching 99.3 and 75.7% removal for fluoride and As(V), respectively, due to the fact that increasing the mass of the adsorbent leads to a larger area and a greater number of sites that allow the adsorption of these contaminants. The thermodynamic study revealed the spontaneity of fluoride and As(V) adsorption, better affinity for fluoride but higher adsorption rate of As(V) on BC. Characterization techniques such as XRD and EDS allowed identifying hydroxyapatite as the mineral phase of BC, which is responsible for the adsorption of BC. By studying the effect of solution pH on the adsorption capacities and the characterization of BC such as XRD, EDS and TGA, it was determined that the mechanisms of fluoride adsorption are by electrostatic attractions and ion exchange, and for As(V) it is by coprecipitation and ion exchange. It was concluded that BC from pleco fish could be an alternative for treating water contaminated by fluorides and As(V).

2.
Environ Technol ; 41(12): 1554-1567, 2020 May.
Article in English | MEDLINE | ID: mdl-30372664

ABSTRACT

Today, fluoride represents one of the most often found, and resilient, pollutants threatening the health of millions of people around the globe. The use of biosorbents is an interesting alternative technique for the removal of fluorine-ions. Chitosan is a natural biopolymer with surface groups capable of removing fluorine; however, their lack of mechanical stability restricts its application. In the present work, we proposed that such limitations can be overcame by forming a composite with zeolite (ZCC). A proper zeolite-to-chitosan ration must be kept to prevent a collapse of the material's capacity. Two ZCCs at ratios of 1:1 and 1:3 were formed and tested for the removal of fluoride from aqueous solution. The composites were characterized by Electron Microscopy, FT-IR, N2 physisorption, and potentiometric titration techniques. During fluoride adsorption studies, the effects of pH and temperature were analysed and thermodynamic parameters for adsorption were calculated. The results demonstrated that there is a chemical interaction between the zeolite and chitosan components leading to a superior adsorption performance than if there was a simple physical mixture of the precursors. Maximum adsorption capacities were reached using the composite material with the lowest chitosan content due to reduced constriction of the zeolite pores and a better dispersion of overall the adsorption sites. Both pH and temperature had a significant, and negative, impact on the adsorption; these effects were discussed. The present work represents an advance in the development of functional biocomposites for the removal of pollutants from aqueous solutions.


Subject(s)
Chitosan , Water Pollutants, Chemical , Zeolites , Adsorption , Fluorides , Hydrogen-Ion Concentration , Kinetics , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...