Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(4)2024 Feb 18.
Article in English | MEDLINE | ID: mdl-38399929

ABSTRACT

Radiation chemistry presents a unique avenue for developing innovative polymeric materials with desirable properties, eliminating the need for chemical initiators, which can be potentially detrimental, especially in sensitive sectors like medicine. In this investigation, we employed a radiation-induced graft polymerization process with N-vinylcaprolactam (NVCL) to modify lignocellulosic membranes derived from Agave salmiana, commonly known as maguey. The membranes underwent thorough characterization employing diverse techniques, including contact angle measurement, degree of swelling, scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier-transform infrared-attenuated total reflectance spectroscopy (FTIR-ATR), nuclear magnetic resonance (CP-MAS 13C-NMR), X-ray photoelectron spectroscopy (XPS), and uniaxial tensile mechanical tests. The membranes' ability to load and release an antimicrobial glycopeptide drug was assessed, revealing significant enhancements in both drug loading and sustained release. The grafting of PNVCL contributed to prolonged sustained release by decreasing the drug release rate at temperatures above the LCST. The release profiles were analyzed using the Higuchi, Peppas-Sahlin, and Korsmeyer-Peppas models, suggesting a Fickian transport mechanism as indicated by the Korsmeyer-Peppas model.

2.
Polymers (Basel) ; 15(12)2023 Jun 18.
Article in English | MEDLINE | ID: mdl-37376371

ABSTRACT

This work proposes the development of a polymer film made up of affordable components for its use as a healthcare material. Chitosan, itaconic acid, and Randia capitata fruit extract (Mexican variation) are the unique ingredients of this biomaterial prospect. Chitosan (from crustacean chitin) is crosslinked with itaconic acid, and in situ added R. capitata fruit extract in a one-pot reaction carried out in water as the sole solvent. Structurally, the film formed is an ionically crosslinked composite characterized by IR spectroscopy and thermal analysis (DSC and TGA); cell viability was also performed in vitro using fibroblasts BALB/3T3. Dry and swollen films were analyzed to determine affinity and stability in water. This chitosan-based hydrogel is designed as a wound dressing due to the combined properties of the chitosan with R. capitata fruit extract, which has potential as bioactive material due to its properties in epithelial regeneration.

3.
Polymers (Basel) ; 15(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36616475

ABSTRACT

Currently, polyethylene terephthalate (PET) is one of the most widely used polymeric materials in different sectors such as medicine, engineering, and food, among others, due to its benefits, including biocompatibility, mechanical resistance, and tolerance to chemicals and/or abrasion. However, despite all these excellent characteristics, it is not capable of preventing the proliferation of microorganisms on its surface. Therefore, providing this property to PET remains a difficult challenge. Fortunately, different strategies can be applied to remove microorganisms from the PET surface. In this work, the surface of the PET film was functionalized with amino groups and later with a dicarboxylic acid, allowing a grafting reaction with chitosan chains. Finally, the chitosan coating was loaded with silver nanoparticles with an average size of 130 ± 37 nm, presenting these materials with an average cell viability of 80%. The characterization of these new PET-based materials showed considerable changes in surface morphology as well as increased surface hydrophilicity without significantly affecting their mechanical properties. In general, the implemented method can open an alternative pathway to design new PET-based materials due to its good cell viability with possible bacteriostatic activity due to the biocidal properties of silver nanoparticles and chitosan.

4.
Int J Mol Sci ; 23(1)2021 Dec 28.
Article in English | MEDLINE | ID: mdl-35008729

ABSTRACT

Surface modification of polypropylene (PP) films was achieved using gamma-irradiation-induced grafting to provide an adequate surface capable of carrying glycopeptide antibiotics. The copolymer was obtained following a versatile two-step route; pristine PP was exposed to gamma rays and grafted with methyl methacrylate (MMA), and afterward, the film was grafted with N-vinylimidazole (NVI) by simultaneous irradiation. Characterization included Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and physicochemical analysis of swelling and contact angle. The new material (PP-g-MMA)-g-NVI was loaded with vancomycin to quantify the release by UV-vis spectrophotometry at different pH. The surface of (PP-g-MMA)-g-NVI exhibited pH-responsiveness and moderate hydrophilicity, which are suitable properties for controlled drug release.


Subject(s)
Drug Delivery Systems , Imidazoles/chemistry , Polymethyl Methacrylate/chemistry , Polypropylenes/chemistry , Polyvinyls/chemistry , Drug Liberation , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Photoelectron Spectroscopy , Polymerization , Solvents/chemistry , Spectrophotometry, Infrared , Spectroscopy, Fourier Transform Infrared , Thermogravimetry , Vancomycin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...