Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Cell Transplant ; 31: 9636897221109884, 2022.
Article in English | MEDLINE | ID: mdl-35808825

ABSTRACT

Spinal cord injury (SCI) causes a dysfunction of sympathetic nervous system innervation that affects the immune system, leading to immunosuppression syndrome (ISS) and contributing to patient degeneration and increased risk of several infections. A possible therapeutic strategy that could avoid further patient deterioration is the supplementation with Vitamin E or trace elements, such as Zinc, Selenium, and Copper, which individually promotes T-cell differentiation and proliferative responses. For this reason, the aim of the present study was to evaluate whether Vitamin E, Zinc, Selenium, and Copper supplementation preserves the number of T-lymphocytes and improves their proliferative function after traumatic SCI. Sprague-Dawley female rats were subjected to moderate SCI and then randomly allocated into three groups: (1) SCI + supplements; (2) SCI + vehicle (olive oil and phosphate-buffered saline); and (3) sham-operated rats. In all rats, the intervention was initiated 15 min after SCI and then administered daily until the end of study. Locomotor recovery was assessed at 7 and 15 days after SCI. At 15 days after supplementation, the quantification of the number of T-cells and its proliferation function were examined. Our results showed that the SCI + supplements group presented a significant improvement in motor recovery at 7 and 15 days after SCI. In addition, this group showed a better T-cell number and proliferation rate than that observed in the group with SCI + vehicle. Our findings suggest that Vitamin E, Zinc, Selenium, and Copper supplementation could be part of a therapy for patients suffering from acute SCI, helping to preserve T-cell function, avoiding complications, and promoting a better motor recovery. All procedures were approved by the Animal Bioethics and Welfare Committee (Approval No. 201870; CSNBTBIBAJ 090812960).


Subject(s)
Selenium , Spinal Cord Injuries , Animals , Copper/therapeutic use , Dietary Supplements , Female , Rats , Rats, Sprague-Dawley , Recovery of Function/physiology , Selenium/pharmacology , Selenium/therapeutic use , Spinal Cord , Spinal Cord Injuries/drug therapy , T-Lymphocytes , Vitamin E/pharmacology , Vitamin E/therapeutic use , Zinc/pharmacology , Zinc/therapeutic use
2.
Neural Regen Res ; 16(7): 1273-1280, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33318405

ABSTRACT

Several therapies have shown obvious effects on structural conservation contributing to motor functional recovery after spinal cord injury (SCI). Nevertheless, neither strategy has achieved a convincing effect. We purposed a combined therapy of immunomodulatory peptides that individually have shown significant effects on motor functional recovery in rats with SCI. The objective of this study was to investigate the effects of the combined therapy of monocyte locomotion inhibitor factor (MLIF), A91 peptide, and glutathione monoethyl ester (GSH-MEE) on chronic-stage spinal cord injury. Female Sprague-Dawley rats underwent a laminectomy of the T9 vertebra and a moderate contusion. Six groups were included: sham, PBS, MLIF + A91, MLIF + GSH-MEE, A91 + GSH-MEE, and MLIF + A91 + GSH-MEE. Two months after injury, motor functional recovery was evaluated using the open field test. Parenchyma and white matter preservation was evaluated using hematoxylin & eosin staining and Luxol Fast Blue staining, respectively. The number of motoneurons in the ventral horn and the number of axonal fibers were determined using hematoxylin & eosin staining and immunohistochemistry, respectively. Collagen deposition was evaluated using Masson's trichrome staining. The combined therapy of MLIF, A91, and GSH-MEE greatly contributed to motor functional recovery and preservation of the medullary parenchyma, white matter, motoneurons, and axonal fibres, and reduced the deposition of collagen in the lesioned area. The combined therapy of MLIF, A91, and GSH-MEE preserved spinal cord tissue integrity and promoted motor functional recovery of rats after SCI. This study was approved by the National Commission for Scientific Research on Bioethics and Biosafety of the Instituto Mexicano del Seguro Social under registration number R-2015-785-116 (approval date November 30, 2015) and R-2017-3603-33 (approval date June 5, 2017).

3.
CNS Neurosci Ther ; 26(6): 650-658, 2020 06.
Article in English | MEDLINE | ID: mdl-32352656

ABSTRACT

AIMS: Immunization with neural-derived peptides (INDP) has demonstrated to be a promising therapy to achieve a regenerative effect in the chronic phase of the spinal cord injury (SCI). Nevertheless, INDP-induced neurogenic effects in the chronic stage of SCI have not been explored. METHODS AND RESULTS: In this study, we analyzed the effect of INDP on both motor and sensitive function recovery; afterward, we assessed neurogenesis and determined the production of cytokines (IL-4, IL-10, and TNF alpha) and neurotrophic factors (BDNF and GAP-43). During the chronic stage of SCI, rats subjected to INDP showed a significant increase in both motor and sensitive recovery when compared to the control group. Moreover, we found a significant increase in neurogenesis, mainly at the central canal and at both the dorsal and ventral horns of INDP-treated animals. Finally, INDP induced significant production of antiinflammatory and regeneration-associated proteins in the chronic stages of SCI. CONCLUSIONS: These findings suggest that INDP has a neurogenic effect that could improve motor and sensitive recovery in the chronic stage of SCI. Moreover, our results also envision the use of INDP as a possible therapeutic strategy for other trauma-related disorders like traumatic brain injury.


Subject(s)
Immunization/methods , Neurogenesis/drug effects , Neuropeptides/administration & dosage , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/therapy , Animals , Female , Inflammation Mediators/antagonists & inhibitors , Inflammation Mediators/metabolism , Neurogenesis/physiology , Pain Measurement/drug effects , Pain Measurement/methods , Rats , Rats, Sprague-Dawley , Spinal Cord Injuries/immunology
4.
Front Neurol ; 11: 189, 2020.
Article in English | MEDLINE | ID: mdl-32300328

ABSTRACT

Immunization with neural derived peptides (INDP), as well as scar removal (SR) and the use of matrices with bone marrow-mesenchymal stem cells (MSCs), have been studied separately and proven to induce a functional and morphological improvement after spinal cord injury (SCI). Herein, we evaluated the therapeutic effects of INDP combined with SR and a fibrin glue matrix (FGM) with MSCs (FGM-MSCs), on motor recovery, axonal regeneration-associated molecules and cytokine expression, axonal regeneration (catecholaminergic and serotonergic fibers), and the induction of neurogenesis after a chronic SCI. For this purpose, female adult Sprague-Dawley rats were subjected to SCI, 60 days after lesion, rats were randomly distributed in four groups: (1) Rats immunized with complete Freund's adjuvant + PBS (vehicle; PBS-I); (2) Rats with SR+ FGM-MSCs; (3) Rats with SR+ INDP + FGM-MSCs; (4) Rats only with INDP. Afterwards, we evaluated motor recovery using the BBB locomotor test. Sixty days after the therapy, protein expression of TNFα, IL-4, IL-10, BDNF, and GAP-43 were evaluated using ELISA assay. The number of catecholaminergic and serotonergic fibers were also determined. Neurogenesis was evaluated through immunofluorescence. The results show that treatment with INDP alone significantly increased motor recovery, anti-inflammatory cytokines, regeneration-associated molecules, axonal regeneration, and neurogenesis when compared to the rest of the groups. Our findings suggest that the combination therapy (SR + INDP + FGM-MSCs) modifies the non-permissive microenvironment post SCI, but it is not capable of inducing an appropriate axonal regeneration or neurogenesis when compared to the treatment with INDP alone.

5.
Neural Regen Res ; 14(6): 1060-1068, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30762019

ABSTRACT

Spinal cord injury is a very common pathological event that has devastating functional consequences in patients. In recent years, several research groups are trying to find an effective therapy that could be applied in clinical practice. In this study, we analyzed the combination of different strategies as a potential therapy for spinal cord injury. Immunization with neural derived peptides (INDP), inhibition of glial scar formation (dipyridyl: DPY), as well as the use of biocompatible matrix (fibrin glue: FG) impregnated with bone marrow mesenchymal stem cells (MSCs) were combined and then its beneficial effects were evaluated in the induction of neuroprotection and neuroregeneration after acute SCI. Sprague-Dawley female rats were subjected to a moderate spinal cord injury and then randomly allocated into five groups: 1) phosphate buffered saline; 2) DPY; 3) INDP + DPY; 4) DPY+ FG; 5) INDP + DPY + FG + MSCs. In all rats, intervention was performed 72 hours after spinal cord injury. Locomotor and sensibility recovery was assessed in all rats. At 60 days after treatment, histological examinations of the spinal cord (hematoxylin-eosin and Bielschowsky staining) were performed. Our results showed that the combination therapy (DPY+ INDP + FG + MSCs) was the best strategy to promote motor and sensibility recovery. In addition, significant increases in tissue preservation and axonal density were observed in the combination therapy group. Findings from this study suggest that the combination theapy (DPY+ INDP + FG + MSCs) exhibits potential effects on the protection and regeneration of neural tissue after acute spinal cord injury. All procedures were approved by the Animal Bioethics and Welfare Committee (approval No. 178544; CSNBTBIBAJ 090812960) on August 15, 2016.

6.
CNS Neurol Disord Drug Targets ; 18(1): 52-62, 2019.
Article in English | MEDLINE | ID: mdl-30394222

ABSTRACT

BACKGROUND: The chronic phase of Spinal Cord (SC) injury is characterized by the presence of a hostile microenvironment that causes low activity and a progressive decline in neurological function; this phase is non-compatible with regeneration. Several treatment strategies have been investigated in chronic SC injury with no satisfactory results. OBJECTIVE- In this proof-of-concept study, we designed a combination therapy (Comb Tx) consisting of surgical glial scar removal plus scar inhibition, accompanied with implantation of mesenchymal stem cells (MSC), and immunization with neural-derived peptides (INDP). METHODS: This study was divided into three subsets, all in which Sprague Dawley rats were subjected to a complete SC transection. Sixty days after injury, animals were randomly allocated into two groups for therapeutic intervention: control group and animals receiving the Comb-Tx. Sixty-three days after treatment we carried out experiments analyzing motor recovery, presence of somatosensory evoked potentials, neural regeneration-related genes, and histological evaluation of serotoninergic fibers. RESULTS: Comb-Tx induced a significant locomotor and electrophysiological recovery. An increase in the expression of regeneration-associated genes and the percentage of 5-HT+ fibers was noted at the caudal stump of the SC of animals receiving the Comb-Tx. There was a significant correlation of locomotor recovery with positive electrophysiological activity, expression of GAP43, and percentage of 5-HT+ fibers. CONCLUSION: Comb-Tx promotes motor and electrophysiological recovery in the chronic phase of SC injury subsequent to a complete transection. Likewise, it is capable of inducing the permissive microenvironment to promote axonal regeneration.


Subject(s)
Cicatrix/surgery , Combined Modality Therapy/methods , Mesenchymal Stem Cell Transplantation , Recovery of Function/drug effects , Recovery of Function/immunology , Spinal Cord Injuries , 2,2'-Dipyridyl/therapeutic use , Animals , Evoked Potentials/physiology , Female , Freund's Adjuvant/therapeutic use , Gene Expression/drug effects , Motor Activity/drug effects , Nerve Regeneration/drug effects , Rats , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/surgery , Spinal Cord Injuries/therapy , Tryptophan/analogs & derivatives , Tryptophan/therapeutic use
7.
J Mol Neurosci ; 65(2): 190-195, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29796836

ABSTRACT

Previous studies revealed that the intensity of spinal cord injury (SCI) plays a key role in the therapeutic effects induced by immunizing with neural-derived peptides (INDP), as severe injuries abolish the beneficial effects induced by INDP. In the present study, we analyzed the expression of some inflammation-related genes (IL6, IL12, IL-1ß, IFNÉ£, TNFα, IL-10, IL-4, and IGF-1) by quantitative PCR in rats subjected to SCI and INDP. We investigated the expression of these genes after a moderate or severe contusion. In addition, we evaluated the effect of INDP by utilizing two different peptides: A91 and Cop-1. After moderate injury, both A91 and Cop-1 elicited a pattern of genes characterized by a significant reduction of IL6, IL1ß, and TNFα but an increase in IL10, IL4, and IGF-1 expression. There was no effect on IL-12 and INFÉ£. In contrast, the opposite pattern was observed when rats were subjected to a severe spinal cord contusion. Immunization with either peptide caused a significant increase in the expression of IL-12, IL-1ß, IFNÉ£ (pro-inflammatory genes), and IGF-1. There was no effect on IL-4 and IL-10 compared to controls. After a moderate SCI, INDP reduced pro-inflammatory gene expression and generated a microenvironment prone to neuroprotection. Nevertheless, severe injury elicits the expression of pro-inflammatory genes that could be aggravated by INDP. These findings correlate with our previous results demonstrating that severe injury inhibits the beneficial effects of protective autoimmunity.


Subject(s)
Insulin-Like Growth Factor I/genetics , Interleukins/genetics , Nerve Tissue Proteins/immunology , Spinal Cord Injuries/genetics , Tumor Necrosis Factor-alpha/genetics , Animals , Female , Immunization , Insulin-Like Growth Factor I/metabolism , Interleukins/metabolism , Nerve Tissue Proteins/therapeutic use , Rats , Rats, Inbred F344 , Spinal Cord Injuries/immunology , Spinal Cord Injuries/pathology , Spinal Cord Injuries/therapy , Tumor Necrosis Factor-alpha/metabolism
8.
PLoS One ; 12(11): e0188506, 2017.
Article in English | MEDLINE | ID: mdl-29190648

ABSTRACT

The inflammatory response is probably one of the main destructive events occurring after spinal cord injury (SCI). Its progression depends mostly on the autoimmune response developed against neural constituents. Therefore, modulation or inhibition of this self-reactive reaction could help to reduce tissue destruction. Anterior chamber associated immune deviation (ACAID) is a phenomenon that induces immune-tolerance to antigens injected into the eye´s anterior chamber, provoking the reduction of such immune response. In the light of this notion, induction of ACAID to neural constituents could be used as a potential prophylactic therapy to promote neuroprotection. In order to evaluate this approach, three experiments were performed. In the first one, the capability to induce ACAID of the spinal cord extract (SCE) and the myelin basic protein (MBP) was evaluated. Using the delayed type hypersensibility assay (DTH) we demonstrated that both, SCE and MBP were capable of inducing ACAID. In the second experiment we evaluated the effect of SCE-induced ACAID on neurological and morphological recovery after SCI. In the results, there was a significant improvement of motor recovery, nociceptive hypersensitivity and motoneuron survival in rats with SCE-induced ACAID. Moreover, ACAID also up-regulated the expression of genes encoding for anti-inflammatory cytokines and FoxP3 but down-regulated those for pro-inflamatory cytokines. Finally, in the third experiment, the effect of a more simple and practical strategy was evaluated: MBP-induced ACAID, we also found significant neurological and morphological outcomes. In the present study we demonstrate that the induction of ACAID against neural antigens in rats, promotes neuroprotection after SCI.


Subject(s)
Anterior Chamber/immunology , Immune Privilege , Motor Neurons/pathology , Spinal Cord Injuries/immunology , Animals , Cell Survival , Cytokines/genetics , Cytokines/immunology , Rats , Rats, Sprague-Dawley , Spinal Cord Injuries/pathology , Spleen/immunology
9.
BMC Neurosci ; 18(1): 7, 2017 01 05.
Article in English | MEDLINE | ID: mdl-28056790

ABSTRACT

BACKGROUND: Immunization with neural derived peptides (INDP) as well as scar removal-separately-have shown to induce morphological and functional improvement after spinal cord injury (SCI). In the present study, we compared the effect of INDP alone versus INDP with scar removal on motor recovery, regeneration-associated and cytokine gene expression, and axonal regeneration after chronic SCI. Scar removal was conducted through a single incision with a double-bladed scalpel along the stump, and scar renewal was halted by adding α,α'-dipyridyl. RESULTS: During the chronic injury stage, two experiments were undertaken. The first experiment was aimed at testing the therapeutic effect of INDP combined with scar removal. Sixty days after therapeutic intervention, the expression of genes encoding for TNFα, IFNγ, IL4, TGFß, BDNF, IGF1, and GAP43 was evaluated at the site of injury. Tyrosine hydroxylase and 5-hydroxytryptamine positive fibers were also studied. Locomotor evaluations showed a significant recovery in the group treated with scar removal + INDP. Moreover; this group presented a significant increase in IL4, TGFß, BDNF, IGF1, and GAP43 expression, but a decrease of TNFα and IFNγ. Also, the spinal cord of animals receiving both treatments presented a significant increase of serotonergic and catecholaminergic fibers as compared to other the groups. The second experiment compared the results of the combined approach versus INDP alone. Rats receiving INDP likewise showed improved motor recovery, although on a lesser scale than those who received the combined treatment. An increase in inflammation and regeneration-associated gene expression, as well as in the percentage of serotonergic and catecholaminergic fibers was observed in INDP-treated rats to a lesser degree than those in the combined therapy group. CONCLUSIONS: These findings suggest that INDP, both alone and in combination with scar removal, could modify the non-permissive microenvironment prevailing at the chronic phase of SCI, providing the opportunity of improving motor recovery.


Subject(s)
Cicatrix/metabolism , Locomotion/drug effects , Neuropeptides/administration & dosage , Spinal Cord Injuries/immunology , Spinal Cord Injuries/metabolism , Vaccination , Animals , Brain-Derived Neurotrophic Factor/metabolism , Chronic Disease , Cytokines/metabolism , Disease Models, Animal , Female , GAP-43 Protein/metabolism , Insulin-Like Growth Factor I/metabolism , Interferon-gamma/metabolism , Interleukin-4/metabolism , Neuropeptides/therapeutic use , Rats , Rats, Sprague-Dawley , Recovery of Function , Spinal Cord Injuries/drug therapy , Spinal Cord Regeneration/genetics , Transforming Growth Factor beta/metabolism , Tumor Necrosis Factor-alpha/metabolism
10.
BMC Neurosci ; 17(1): 42, 2016 06 30.
Article in English | MEDLINE | ID: mdl-27364353

ABSTRACT

BACKGROUND: After spinal cord (SC)-injury, a non-modulated immune response contributes to the damage of neural tissue. Protective autoimmunity (PA) is a T cell mediated, neuroprotective response induced after SC-injury. Immunization with neural-derived peptides (INDP), such as A91, has shown to promote-in vitro-the production of neurotrophic factors. However, the production of these molecules has not been studied at the site of injury. RESULTS: In order to evaluate these issues, we performed four experiments in adult female Sprague-Dawley rats. In the first one, brain derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) concentrations were evaluated at the site of lesion 21 days after SC-injury. BDNF and NT-3 were significantly increased in INDP-treated animals. In the second experiment, proliferation of anti-A91 T cells was assessed at chronic stages of injury. In this case, we found a significant proliferation of these cells in animals subjected to SC-injury + INDP. In the third experiment, we explored the amount of BDNF and NT3 at the site of injury in the chronic phase of rats subjected to either SC-contusion (SCC; moderate or severe) or SC-transection (SCT; complete or incomplete). The animals were treated with INDP immediately after injury. Rats subjected to moderate contusion or incomplete SCT showed significantly higher levels of BDNF and NT-3 as compared to PBS-immunized ones. In rats with severe SCC and complete SCT, BDNF and NT-3 concentrations were barely detected. Finally, in the fourth experiment we assessed motor function recovery in INDP-treated rats with moderate SC-injury. Rats immunized with A91 showed a significantly higher motor recovery from the first week and up to 4 months after SC-injury. CONCLUSIONS: The results of this study suggest that PA boosted by immunization with A91 after moderate SC-injury can exert its benefits even at chronic stages, as shown by long-term production of BDNF and NT-3 and a substantial improvement in motor recovery.


Subject(s)
Autoimmunity , Brain-Derived Neurotrophic Factor/metabolism , Myelin Basic Protein/immunology , Neurotrophin 3/metabolism , Peptide Fragments/immunology , Spinal Cord Injuries/immunology , Spinal Cord Injuries/therapy , Animals , Chronic Disease , Disease Models, Animal , Female , Motor Activity , Random Allocation , Rats, Sprague-Dawley , Recovery of Function , Severity of Illness Index , Spinal Cord/immunology , Time Factors , Vaccination
11.
Biomed Res Int ; 2013: 340727, 2013.
Article in English | MEDLINE | ID: mdl-24294606

ABSTRACT

Monocyte locomotion inhibitory factor (MLIF) is a pentapeptide produced by Entamoeba histolytica that has a potent anti-inflammatory effect. Either MLIF or phosphate buffered saline (PBS) was administered directly onto the spinal cord (SC) immediately after injury. Motor recovery was evaluated. We also analyzed neuroprotection by quantifying the number of surviving ventral horn motor neurons and the persistence of rubrospinal tract neurons. To evaluate the mechanism through which MLIF improved the outcome of SC injury, we quantified the expression of inducible nitric oxide synthase (iNOS), interleukin-10 (IL-10), and transforming growth factor- ß (TGF- ß ) genes at the site of injury. Finally, the levels of nitric oxide and of lipid peroxidation were also determined in peripheral blood. Results showed that MLIF improved the rate of motor recovery and this correlated with an increased survival of ventral horn and rubrospinal neurons. These beneficial effects were in turn associated with a reduction in iNOS gene products and a significant upregulation of IL-10 and TGF- ß expression. In the same way, MLIF reduced the concentration of nitric oxide and the levels of lipid peroxidation in systemic circulation. The present results demonstrate for the first time the neuroprotective effects endowed by MLIF after SC injury.


Subject(s)
Entamoeba histolytica/chemistry , Locomotion/drug effects , Oligopeptides/administration & dosage , Spinal Cord Injuries/drug therapy , Animals , Anterior Horn Cells/drug effects , Anterior Horn Cells/physiopathology , Humans , Interleukin-10/metabolism , Lipid Peroxidation/drug effects , Neuroprotective Agents/administration & dosage , Nitric Oxide Synthase Type II/metabolism , Oligopeptides/chemistry , Rats , Spinal Cord/drug effects , Spinal Cord/physiopathology , Spinal Cord Injuries/pathology , Transforming Growth Factor beta/metabolism
12.
Biomed Res Int ; 2013: 827517, 2013.
Article in English | MEDLINE | ID: mdl-24236295

ABSTRACT

Apoptosis is one of the most destructive mechanisms that develop after spinal cord (SC) injury. Immunization with neural-derived peptides (INDPs) such as A91 has shown to reduce the deleterious proinflammatory response and the amount of harmful compounds produced after SC injury. With the notion that the aforementioned elements are apoptotic inducers, we hypothesized that INDPs would reduce apoptosis after SC injury. In order to test this assumption, adult rats were subjected to SC contusion and immunized either with A91 or phosphate buffered saline (PBS; control group). Seven days after injury, animals were euthanized to evaluate the number of apoptotic cells at the injury site. Apoptosis was evaluated using DAPI and TUNEL techniques; caspase-3 activity was also evaluated. To further elucidate the mechanisms through which A91 exerts this antiapoptotic effects we quantified tumor necrosis factor-alpha (TNF-α). To also demonstrate that the decrease in apoptotic cells correlated with a functional improvement, locomotor recovery was evaluated. Immunization with A91 significantly reduced the number of apoptotic cells and decreased caspase-3 activity and TNF-α concentration. Immunization with A91 also improved the functional recovery of injured rats. The present study shows the beneficial effect of INDPs on preventing apoptosis and provides more evidence on the neuroprotective mechanisms exerted by this strategy.


Subject(s)
Apoptosis/drug effects , Immunization , Nerve Tissue Proteins/pharmacology , Peptides/pharmacology , Spinal Cord Injuries/immunology , Animals , Apoptosis/immunology , Female , Nerve Tissue Proteins/immunology , Peptides/immunology , Rats , Rats, Sprague-Dawley , Spinal Cord Injuries/pathology , Tumor Necrosis Factor-alpha/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...