Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Dis ; 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35724312

ABSTRACT

The agave crop (Agave angustifolia), is of economic importance for Mexico, for the agave is made mainly an alcoholic beverage called locally mezcal. In the state of Guerrero, in the municipality of Huitzuco de los Figueroa (18.2510026N, 99.2320182W, 1196 m above sea level), a severe disease affecting agave leaves was detected. The field symptoms consisted of pale to brown dark descending lesions, covering >50% of the leaf surface, in which the presence of pycnidia was observed. In an estimated area of 0.5 ha, the estimated incidence was 67% (n=100 plants). Symptomatic fragments from leaves (approximately 0.5 cm) were taken, superficially disinfected with 1% NaClO, and rinsed twice with sterile distilled water. Then they were transferred to potato dextrose agar (PDA) medium, and incubated at 28 °C. After five days, twelve representative isolates were selected and purified by the hyphal tip technique. In the PDA medium, the colonies were initially light gray, later they became dark, and after 22 days of incubation, the development of numerous dark pycnidia was observed on the surface of the medium. Initially, immature hyaline conidia, unicellular, oval, and double-walled were observed. The mature conidia were dark brown, oval, with one septum and longitudinal striation, and measured 17.5 to 27 [average 25.3 µm; n=50] × 10.5 to 15.7 [average 13.9 µm; n=50]. Based on the morphological characteristics, the fungus was identified as Lasiodiplodia theobromae (Pat.) Griffon & Maubl. (Alves et al. 2008). Isolates LAS3 and LAS4 were used for molecular identification, this was done by amplifying the regio internal transcribed spacer (ITS) of rDNA with primers ITS1 and ITS4 (White et al. 1990) and translation elongation factor 1-alpha ( EF-1α) genes using primers EF1-728F/EF1-986R (Carbone and Kohn 1999). The resulting sequences were deposited in GenBank (LAS3; ON391564 and LAS4; ON391565 for ITS, and LAS3; ON368190 and LAS4; ON368191 for EF-1α). BLASTn analysis sequences of isolated LAS3 and LAS4 revealed for ITS 98.6% identity with L. theobromae (MK934699.1), and for EF-1α indicated 100% identity (MF422024.1). From concatenated sequences ITS-EF-1α regions, a phylogenetic analysis was carried out in MEGA X software, using the Maximum Likelihood and Kimura 2-parameter model with 1,000 bootstraps replicated; isolates LAS3 and LAS4 were clustered in the clade of the members of L. theobromae strains CAA006 (Alves et al. 2006), and INTA-IMC 1601 (Perez et al. 2018). The pathogenicity tests were carried out on 10 healthy 3 year-old agave plants, in which the mycelium of the LAS4 isolate was inserted at three equidistant points/leaf, using a sterile toothpick. Five healthy agave plants were inoculated only with sterile PDA as control treatment. The inoculated plants were covered with transparent plastic bags and housed in a greenhouse at 28 °C. After seven days, similar symptoms to those observed in the field were observed in all inoculated plants. Control plants did not develop symptoms. The fungus L. theobromae was re-isolated again from the infected leaves, fulfilling Koch's postulates. In China, L. theobromae has been reported as the cause of leaf rot on A. sisalana (Xie et al. 2016). To our knowledge, this is the first report of L. theobromae causing leaf rot on A. angustifolia in Mexico. This research is useful to design management strategies for leaf rot disease for local farmers of A. angustifolia.

2.
Plant Dis ; 2021 May 10.
Article in English | MEDLINE | ID: mdl-33970038

ABSTRACT

The agave (Agave spp.) is an important crop in México, with 120,897 ha grown mainly for alcoholic beverage production (SIAP, 2019). In September 2020, in the municipality of Huitzuco de los Figueroa (18.328692 N; 99.3998 W), Guerrero State, México, a serious disease was observed affecting Agave angustifolia. Disease incidence was 8% of 150 plants sampled over an approximate area of 2.5 ha. Initial symptoms of soft rot of the bud developed and produced an abundant exudate which appeared from the apical part to the base of the plant. In severe infections, the plants showed total maceration of the bud, and consequently death of the plants was observed. Symptomatic plant tissue was superficially disinfected with 1% NaOCl for 30 s, and rinsed in sterile water three times. The disinfected tissues were macerated and with a loop spread in Nutrient Agar. The plates were incubated at 28 ° C for 2 days. Yellowish bacterial colonies were isolated, and eight colonies were selected for characterization. The bacterial strains were gram negative and rod-shaped, negative for fluorescent pigment tests and Kovacs' oxidase. Two isolates designated AGA1 and AGA2 were identified by PCR amplification and sequencing of the partial 16S rRNA gene with the primer 27F / 1492R (Lane 1991), and partial fusA, rpoB, and gyrB genes (Delétoile et al. 2009). Sequences were deposited in GenBank, with the accession numbers for 16S rRNA, AGA1 as MW548406 and AGA2 as MW548407; for specific genes fusA (AGA1 = MW558445, AGA2 = MW558446), rpoB (AGA1 = MW558447, AGA2 = MW558448) and gyrB (AGA1 = MW558449, AGA2 = MW558450), and they were compared with the sequences available in GenBank using BLASTn. 16S rRNA gene sequences for AGA1 and AGA2 aligned with Pantoea dispersa (MT921704.1, 99.9% identity). Housekeeping genes also aligned 99 to 100% to P. dispersa (fusA = 100%, CP045216.1; rpoB = 99.8% MH015167.1 and gyrB = 99%, MK928270.1). Phylogenetic analysis of concatenated genes showed that strains AGA1 and AGA2 cluster with P. dispersa. To confirm pathogenicity, eight plants of six-month-old A. angustifolia were inoculated with strain AGA1 using sterile toothpicks dipped in 108 CFU/ml bacterial suspension. The toothpicks were inserted in the middle part of the bud. Four plants were inoculated with sterile water as control. The plants were covered with plastic bags and housed in a greenhouse (average temperature and relative humidity of 25 ° C and 85%, respectively). Pathogenicity tests were repeated two times. After seven days, all inoculated plants developed symptoms similar to those observed in the field. Control plants did not show symptoms. From the plants that showed symptoms, the pathogen was reisolated again and was identified by morphological and molecular characterization, following the method previously described, fulfilling Koch's postulates. In México, Erwinia cacticida and Pantoea ananatis has been previously reported on A. tequilana that as causing soft rot and red leaf ring, respectively (Jimenez-Hidalgo et al. 2004; Fucikovsky and Aranda 2006). To our knowledge, this is the first report of P. dispersa causing bud soft rot on A. angustifolia in México. More studies monitoring and control strategies of bud soft rot on A. angustifolia are required.

SELECTION OF CITATIONS
SEARCH DETAIL
...