Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Publication year range
1.
Med Mycol ; 59(1): 31-40, 2021 Jan 04.
Article in English | MEDLINE | ID: mdl-32407475

ABSTRACT

The development of mature biofilms is an aid in numerous aspects of the life cycle of fungi. It is well known that Sporothrix schenckii complex causes a benign subcutaneous mycosis, but recent studies have suggestedthat biofilm formation may be one of the important factors involved in its virulence. Here we report the study of the biomass organization and a model of the stages of S. schenckii biofilm development: adsorption, active adhesion, microcolony formation, maturation, and dispersal of biofilm fragments. During the development, the biofilm is surrounded by extracellular matrix, which contains glycoprotein (mannose rich), carbohydrates, lipids, and nucleic acid. In addition, the extracellular DNA increases in extracellular matrix as a key component to structural integrity and antifungal resistance. The study of S. schenckii biofilm contributes to a better understanding of growth biofilm and physiology, adding new insights into the mechanisms of virulence and persistence of pathogenic microorganisms.


Subject(s)
Biofilms/growth & development , Extracellular Matrix/physiology , Sporothrix/growth & development , Sporotrichosis/physiopathology , Virulence/physiology , Humans
2.
Pharmacognosy Res ; 8(Suppl 1): S56-60, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27114694

ABSTRACT

BACKGROUND: Recently, extracts from natural sources have been tested for their antifungal properties. In this aspect, Flammulina velutipes extracts possess a significant amount of branch-chained carbohydrates with mannose moieties that, hypothetically, can reduce the adhesion. OBJECTIVE: In this study, we assessed the capacity of extracts from F. velutipes (wild-type AQF-1 and ATCC 34574 as the reference strain) to inhibit the adhesion of S. schenkii and C. albicans to epithelial cells. MATERIALS AND METHODS: The aqueous extracts from F. velutipes strains were obtained by sonication, total carbohydrate and protein was analyzed by Dubois and Lowry methods respectively. Effect of the extracts (50, 100 and 150 µg/mL) on the fungi adhesion to host cells was evaluated after 1 h interaction, and the percentage of inhibition of adhesion was measured. After of interaction the cytoskeleton from cell was analyzed with phalloidin-FITC. RESULTS: The extract from strain AQF-1 (50, 100 and 150 µg/mL) inhibited the adhesion of: S. schenkii in a dose-dependent manner (4.9, 7.5 and 12.7%, respectively) and C. albicans in a dose-independent manner (5.2%). The percentage of inhibition by extracts from the strain ATCC34574 at the same concentrations, shown that are dose independent for both fungi: 3.9% for S. schenkii and 2.6% for C. albicans. CONCLUSION: The extracts from F. velutipes inhibit the adhesion of pathogenic fungi to host cells. The mechanism molecular is unknown; however, is probably an interaction between the polysaccharides from extracts with the fungi receptors. This aspect is currently analyzed. SUMMARY: The yields of mycelium from two strains of F. velutipes and the extract from it were similar.Extracts from both strains have inhibited adhesion of S. schenkii and C. albicans to epithelial cells in vitro, but the extract from strain AQF-1 was more effective.The extracts have not prevented damage to epithelial cells caused by pathogenic fungi. Abbreviation Used: YPG: Yeast peptone glucose, DMEM: Dulbecco's Modified Eagle's medium, FITC: Fluorescein isothiocyanate.

3.
Appl Radiat Isot ; 108: 12-15, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26656429

ABSTRACT

Acute or chronic exposure to ionizing radiation is a factor that may be hazardous to health. It has been reported that exposure to low doses of radiation (less than 50 mSv/year) and subsequently exposure to high doses produces greater effects in people. It has been reported that people who have been exposed to low doses of radiation (less than 50 mSv/year) and subsequently are exposed to high doses, have greater effects. However, at a molecular and biochemical level, it is an unknown alteration. This study, analyzes the susceptibility of a biological system (HeLa ATCC CCL-2 human cervix cancer cell line) to ionizing radiation (6 and 60 mSv/90 s). Our research considers multiple variables such as: total protein profile, mitochondrial metabolic activity (XTT assay), cell viability (Trypan blue exclusion assay), cytoskeleton (actin microfilaments), nuclei (DAPI), and genomic DNA. The results indicate, that cells exposed to ionizing radiation show structural alterations in nuclear phenotype and aneuploidy, further disruption in the tight junctions and consequently on the distribution of actin microfilaments. Similar alterations were observed in cells treated with a genotoxic agent (200 µM H2O2/1h). In conclusion, this multi-criteria assessment enables precise comparisons of the effects of radiation between various line cells. However, it is necessary to determine stress markers for integration of the effects of ionizing radiation.


Subject(s)
Cell Nucleus/radiation effects , Cell Size/radiation effects , Cytoskeleton/radiation effects , DNA Damage , Dose-Response Relationship, Radiation , Mitochondria/metabolism , Cell Nucleus/pathology , Cytoskeleton/pathology , Energy Metabolism/physiology , Energy Metabolism/radiation effects , HeLa Cells , Humans , Mitochondria/radiation effects , Radiation, Ionizing
4.
Bioinorg Chem Appl ; 2014: 923834, 2014.
Article in English | MEDLINE | ID: mdl-25477771

ABSTRACT

The effects of organic and inorganic forms of selenium (Se) on human cells have been extensively studied for nutritional concentrations; however, to date, little is known about the potential toxicity at supranutritional levels. In the present study we determined the effects of sodium selenite (SSe) and selenomethionine (SeMet) on cell growth and intracellular structures in lung cancer cells exposed at Se concentrations between 0 and 3 mM. Our results showed that SSe affected cell growth more rapidly than SeMet (24 h and 48 h, resp.). After 24 h of cells exposure to 0.5, 1.5, and 3 mM SSe, cell growth was reduced by 10, 50, and 60%, as compared to controls. After 48 h, nuclear fragmentation was evident in cells exposed to SSe, suggesting an induction to cell death. In contrast, SeMet did not affect cell proliferation, and the cells were phenotypically similar to controls. Microtubules and microfilaments structures were also affected by both Se compounds, again SSe being more toxic than SeMet. To our knowledge, this is the first report on the differential effects of organic and inorganic Se in supranutritional levels in lung cancer cells.

5.
Medicina (B Aires) ; 67(2): 167-76, 2007.
Article in Spanish | MEDLINE | ID: mdl-17593605

ABSTRACT

Nitric oxide participates in both physiological and pathophysiological functions, and it plays an important role in the mammalian immune system in killing or inhibiting the growth of many pathogens, including parasites, viruses and bacteria. Entamoeba histolytica is a protozoan parasite that causes amoebiasis, which is characterized by intestinal damage and amoebic liver abscess development. The development of amoebic liver abscess in hamsters is similar to that in humans, whereas mice are resistant to amoebic liver abscess development due to an increase in nitric oxide production. Unlike in mice, amoebic liver abscess development in hamsters is due to an excess in nitric oxide production or possibly to a greater susceptibility of the hamster to damage caused by nitric oxide. Therefore, it could be important to elucidate if, in humans, an excess in nitric oxide production favors amoebic liver abscess development.


Subject(s)
Entamoeba histolytica/pathogenicity , Liver Abscess, Amebic/parasitology , Nitric Oxide Synthase/metabolism , Nitric Oxide/biosynthesis , Animals , Cricetinae , Disease Models, Animal , Humans , Immune System/physiology , Liver Abscess, Amebic/immunology , Liver Abscess, Amebic/physiopathology , Mice
6.
Medicina (B.Aires) ; 67(2): 167-176, 2007. ilus
Article in Spanish | BINACIS | ID: bin-123521

ABSTRACT

El óxido nítrico participa en funciones fisiológicas y fisiopatológicas, así como en el mecanismo de defensa del sistema inmunológico de mamíferos contra parásitos, virus y bacterias. La Entamoeba histolytica es un parásito protozoario causante de la amebiasis, la cual se caracteriza por el daño intestinal y la formación del absceso hepático amebiano (AHA). El desarrollo del absceso hepático amebiano en el hámster es similar al que desarrolla el humano, mientras que el ratón es resistente a la formación de este absceso, debido a un incremento en la producción de óxido nítrico. A diferencia del ratón, el desarrollo del absceso hepático amebiano en el hámster es debido a un exceso en la producción de óxido nítrico o posiblemente a una mayor susceptibilidad del hámster al daño producido por el óxido nítrico. Por lo tanto, sería importante realizar más estudios para determinar si en el humano, un exceso en la producción de óxido nítrico favorece la formación del absceso hepático amebiano.(AU)


Nitric oxide participates in both physiological and pathophysiological functions, and it plays an important role in the mammalian immune system in killing or inhibiting the growth of many pathogens, including parasites, viruses and bacteria. Entamoeba histolytica is a protozoan parasite that causes amoebiasis, which is characterized by intestinal damage and amoebic liver abscess development. The development of amoebic liver abscess in hamsters is similar to that in humans, whereas mice are resistant to amoebic liver abscess development due to an increase in nitric oxide production. Unlike in mice, amoebic liver abscess development in hamsters is due to an excess in nitric oxide production or possibly to a greater susceptibility of the hamster to damage caused by nitric oxide. Therefore, it could be important to elucidate if, in humans, an excess in nitric oxide production favors amoebic liver abscess development.(AU)


Subject(s)
Humans , Animals , Cricetinae , Mice , Entamoeba histolytica/pathogenicity , Liver Abscess, Amebic/immunology , Liver Abscess, Amebic/parasitology , Nitric Oxide/biosynthesis , Nitric Oxide Synthase/metabolism , Liver Abscess, Amebic/physiopathology , Disease Models, Animal , Immune System/physiology
7.
Medicina (B.Aires) ; 67(2): 167-176, 2007. ilus
Article in Spanish | LILACS | ID: lil-480619

ABSTRACT

El óxido nítrico participa en funciones fisiológicas y fisiopatológicas, así como en el mecanismo de defensa del sistema inmunológico de mamíferos contra parásitos, virus y bacterias. La Entamoeba histolytica es un parásito protozoario causante de la amebiasis, la cual se caracteriza por el daño intestinal y la formación del absceso hepático amebiano (AHA). El desarrollo del absceso hepático amebiano en el hámster es similar al que desarrolla el humano, mientras que el ratón es resistente a la formación de este absceso, debido a un incremento en la producción de óxido nítrico. A diferencia del ratón, el desarrollo del absceso hepático amebiano en el hámster es debido a un exceso en la producción de óxido nítrico o posiblemente a una mayor susceptibilidad del hámster al daño producido por el óxido nítrico. Por lo tanto, sería importante realizar más estudios para determinar si en el humano, un exceso en la producción de óxido nítrico favorece la formación del absceso hepático amebiano.


Nitric oxide participates in both physiological and pathophysiological functions, and it plays an important role in the mammalian immune system in killing or inhibiting the growth of many pathogens, including parasites, viruses and bacteria. Entamoeba histolytica is a protozoan parasite that causes amoebiasis, which is characterized by intestinal damage and amoebic liver abscess development. The development of amoebic liver abscess in hamsters is similar to that in humans, whereas mice are resistant to amoebic liver abscess development due to an increase in nitric oxide production. Unlike in mice, amoebic liver abscess development in hamsters is due to an excess in nitric oxide production or possibly to a greater susceptibility of the hamster to damage caused by nitric oxide. Therefore, it could be important to elucidate if, in humans, an excess in nitric oxide production favors amoebic liver abscess development.


Subject(s)
Humans , Animals , Cricetinae , Mice , Entamoeba histolytica/pathogenicity , Liver Abscess, Amebic/immunology , Liver Abscess, Amebic/parasitology , Nitric Oxide Synthase/metabolism , Nitric Oxide/biosynthesis , Disease Models, Animal , Immune System/physiology , Liver Abscess, Amebic/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...