Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Main subject
Publication year range
1.
Light Sci Appl ; 12(1): 274, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37978285

ABSTRACT

Existing auto-focusing methods in laser processing typically include two independent modules, one for surface detection and another for [Formula: see text]-axis adjustment. The latter is mostly implemented by mechanical [Formula: see text] stage motion, which is up to three orders of magnitude slower than the lateral processing speed. To alleviate this processing bottleneck, we developed a single-lens approach, using only one high-speed [Formula: see text]-scanning optical element, to accomplish both in situ surface detection and focus control quasi-simultaneously in a dual-beam setup. The probing beam scans the surface along the [Formula: see text]-axis continuously, and its reflection is detected by a set of confocal optics. Based on the temporal response of the detected signal, we have developed and experimentally demonstrated a dynamic surface detection method at 140-350 kHz, with a controlled detection range, high repeatability, and minimum linearity error of 1.10%. Sequentially, by synchronizing at a corresponding oscillation phase of the [Formula: see text]-scanning lens, the fabrication beam is directed to the probed [Formula: see text] position for precise focus alignment. Overall, our approach provides instantaneous surface tracking by collecting position information and executing focal control both at 140-350 kHz, which significantly accelerates the axial alignment process and offers great potential for enhancing the speed of advanced manufacturing processes in three-dimensional space.

2.
Lasers Med Sci ; 38(1): 194, 2023 Aug 26.
Article in English | MEDLINE | ID: mdl-37626207

ABSTRACT

Conventional surface roughening treatments used for silica-based ceramics in order to improve subsequent adhesion become unreliable for zirconia ceramics. Laser conditioning can be a good alternative. The purpose of this in vitro study was to compare conventional (macro) shear bond strength (SBS) values obtained between resin composite and zirconium oxide ceramic samples grouped according to different micromechanical treatments received, and examine differences in surface roughness. One-hundred and fifty disks of sintered zirconia were randomly divided into 5 groups and roughened as follows: (1) Group NOT, no surface treatment; (2) Group APA, abraded with 50-µm aluminum-oxide (Al2O3) particles; (3) Group TBS, abraded with 30-µm aluminum-oxide particles covered with silica; (4) Group CO2, irradiated with a CO2 laser which emitted in continuous wave mode at 3 W of power; and (5) Group FEM, irradiated with a pulsed femtosecond laser, with an incident energy of 10 µJ, a frequency of 1000 Hz, and a fluence of 1.3 kJ/cm2. All surfaces were treated with a MDP-containing adhesive/silane coupling agent mixture upon which were prepared and light polymerized composite resin cylinders. Shear bond strength was measured and samples were observed by scanning electron microscopy (SEM). Statistically significant differences (p < 0.05) were found among all groups, except between CO2 and FEM, which showed the highest adhesion values (15.12 ± 2.35 MPa and 16.03 ± 2.73 MPa). SEM revealed differences in surface patterns. CO2 laser irradiation can be an alternative to sandblasting, although it could also weaken the ceramic. Suitable surface patterns on zirconia ceramics can be obtained with ultrashort pulsed radiation emitted by a pulsed femtosecond laser.


Subject(s)
Lasers, Gas , Aluminum , Carbon Dioxide , Aluminum Oxide , Ceramics , Composite Resins
3.
Opt Express ; 31(11): 17619-17628, 2023 May 22.
Article in English | MEDLINE | ID: mdl-37381491

ABSTRACT

We print a tunable photopolymer (photopolymer dispersed liquid crystal -PDLC), using the laser-induced direct transfer technique without absorber layer, which was a challenge for this technique given the low absorption and high viscosity of PDLC, and which had not been achieved so far to our knowledge. This makes the LIFT printing process faster and cleaner and achieves a high-quality printed droplet (aspheric profile and low roughness). A femtosecond laser was needed to reach sufficiently peak energies to induce nonlinear absorption and eject the polymer onto a substrate. Only a narrow energy window allows the material to be ejected without spattering.

4.
Materials (Basel) ; 16(2)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36676435

ABSTRACT

In the last decades, digital manufacturing has constituted the headline of what is starting to be known as the 'fourth industrial revolution', where the fabrication processes comprise a hybrid of technologies that blur the lines between fundamental sciences, engineering, and even medicine as never seen before. One of the reasons why this mixture is inevitable has to do with the fact that we live in an era that incorporates technology in every single aspect of our daily lives. In the industry, this has translated into fabrication versatility, as follows: design changes on a final product are just one click away, fabrication chains have evolved towards continuous roll-to roll processes, and, most importantly, the overall costs and fabrication speeds are matching and overcoming most of the traditional fabrication methods. Laser-induced forward transfer (LIFT) stands out as a versatile set of fabrication techniques, being the closest approach to an all-in-one additive manufacturing method compatible with virtually any material. In this technique, laser radiation is used to propel the material of interest and deposit it at user-defined locations with high spatial resolution. By selecting the proper laser parameters and considering the interaction of the laser light with the material, it is possible to transfer this technique from robust inorganic materials to fragile biological samples. In this work, we first present a brief introduction on the current developments of the LIFT technique by surveying recent scientific review publications. Then, we provide a general research overview by making an account of the publication and citation numbers of scientific papers on the LIFT technique considering the last three decades. At the same time, we highlight the geographical distribution and main research institutions that contribute to this scientific output. Finally, we present the patent status and commercial forecasts to outline future trends for LIFT in different scientific fields.

5.
Materials (Basel) ; 15(21)2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36363059

ABSTRACT

The fabrication of laser-induced periodic surface structures (LIPSS) over extended areas at high processing speeds requires the use of high repetition rate femtosecond lasers. It is known that industrially relevant materials such as steel experience heat accumulation when irradiated at repetition rates above some hundreds of kHz, and significant debris redeposition can take place. However, there are few studies on how the laser repetition rate influences both the debris deposition and the final LIPSS morphology. In this work, we present a study of fs laser-induced fabrication of low spatial frequency LIPSS (LSFL), with pulse repetition rates ranging from 10 kHz to 2 MHz on commercially available steel. The morphology of the laser-structured areas as well as the redeposited debris was characterized by scanning electron microscopy (SEM) and µ-Raman spectroscopy. To identify repetition rate ranges where heat accumulation is present during the irradiations, we developed a simple heat accumulation model that solves the heat equation in 1 dimension implementing a Forward differencing in Time and Central differencing in Space (FTCS) scheme. Contact angle measurements with water demonstrated the influence of heat accumulation and debris on the functional wetting behavior. The findings are directly relevant for the processing of metals using high repetition rate femtosecond lasers, enabling the identification of optimum conditions in terms of desired morphology, functionality, and throughput.

6.
Opt Lett ; 47(7): 1634-1637, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35363696

ABSTRACT

Fast and versatile alteration of focal positions is critical for applications including selective volumetric modification and parallel laser processing. In this Letter, we implement and characterize an ultrafast, variable focal system using a tunable acoustic gradient of index lens to achieve multi-focal laser processing. We apply our method to the femtosecond laser-induced intra-volumetric modification in glass to show the flexibility in controlling focal positions. Based on this understanding, we exploit the multi-focal nature of the system to demonstrate laser machining on both surfaces of a transparent glass slide in a single lateral scan.

7.
Materials (Basel) ; 14(7)2021 Mar 27.
Article in English | MEDLINE | ID: mdl-33801726

ABSTRACT

Superficial amorphization and re-crystallization of silicon in <111> and <100> orientation after irradiation by femtosecond laser pulses (790 nm, 30 fs) are studied using optical imaging and transmission electron microscopy. Spectroscopic imaging ellipsometry (SIE) allows fast data acquisition at multiple wavelengths and provides experimental data for calculating nanometric amorphous layer thickness profiles with micrometric lateral resolution based on a thin-film layer model. For a radially Gaussian laser beam and at moderate peak fluences above the melting and below the ablation thresholds, laterally parabolic amorphous layer profiles with maximum thicknesses of several tens of nanometers were quantitatively attained. The accuracy of the calculations is verified experimentally by high-resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (STEM-EDX). Along with topographic information obtained by atomic force microscopy (AFM), a comprehensive picture of the superficial re-solidification of silicon after local melting by femtosecond laser pulses is drawn.

8.
Nanomaterials (Basel) ; 10(1)2020 Jan 14.
Article in English | MEDLINE | ID: mdl-31947575

ABSTRACT

Laser-induced periodic surface structures (LIPSS) are often present when processing solid targets with linearly polarized ultrashort laser pulses. The different irradiation parameters to produce them on metals, semiconductors and dielectrics have been studied extensively, identifying suitable regimes to tailor its properties for applications in the fields of optics, medicine, fluidics and tribology, to name a few. One important parameter widely present when exposing the samples to the high intensities provided by these laser pulses in air environment, that generally is not considered, is the formation of a superficial laser-induced oxide layer. In this paper, we fabricate LIPSS on a layer of the oxidation prone hard-coating material chromium nitride in order to investigate the impact of the laser-induced oxide layer on its formation. A variety of complementary surface analytic techniques were employed, revealing morphological, chemical and structural characteristics of well-known high-spatial frequency LIPSS (HSFL) together with a new type of low-spatial frequency LIPSS (LSFL with an anomalous orientation parallel to the laser polarization. Based on this input, we performed finite-difference time-domain calculations considering a layered system resembling the geometry of the HSFL along with the presence of a laser-induced oxide layer. The simulations support a scenario that the new type of LSFL is formed at the interface between the laser-induced oxide layer and the non-altered material underneath. These findings suggest that LSFL structures parallel to the polarization can be easily induced in materials that are prone to oxidation.

9.
ACS Appl Mater Interfaces ; 10(42): 36564-36571, 2018 Oct 24.
Article in English | MEDLINE | ID: mdl-30246525

ABSTRACT

The wettability of a material surface is an essential property that can define the range of applications it can be used for. In the particular case of steel, industrial applications are countless but sometimes limited because of the lack of control over its surface properties. Although different strategies have been proposed to tune the wetting behavior of metal surfaces, most of them require the use of processes such as coatings with different materials or plasma/chemical etching. In this work, we present two different laser-based direct-write strategies that allow tuning the wetting properties of 1.7131 steel over a wide range of contact angles using a high repetition rate femtosecond laser. The strategy consists in the writing of parallel and crossed lines with variable spacing. A detailed morphological analysis confirmed the formation of microstructures superimposed with nanofeatures, forming a hierarchical surface topography that influences the wetting properties of the material surface. Contact angle measurements with water confirm that this behavior is mostly dependent on the line-to-line spacing and the polarization-dependent orientation of the structures. Moreover, we demonstrate that the structures can be easily replicated in a polymer using a laser-fabricated steel master, which enables low-cost mass production. These findings provide a practical route for developing user-defined wetting control for new applications of steel and other materials functionalized by rapid laser structuring.

10.
Sci Rep ; 8(1): 6135, 2018 Apr 12.
Article in English | MEDLINE | ID: mdl-29643427

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

11.
Sci Rep ; 7(1): 4594, 2017 07 04.
Article in English | MEDLINE | ID: mdl-28676639

ABSTRACT

Periodic structures of alternating amorphous-crystalline fringes have been fabricated in silicon using repetitive femtosecond laser exposure (800 nm wavelength and 120 fs duration). The method is based on the interference of the incident laser light with far- and near-field scattered light, leading to local melting at the interference maxima, as demonstrated by femtosecond microscopy. Exploiting this strategy, lines of highly regular amorphous fringes can be written. The fringes have been characterized in detail using optical microscopy combined modelling, which enables a determination of the three-dimensional shape of individual fringes. 2D micro-Raman spectroscopy reveals that the space between amorphous fringes remains crystalline. We demonstrate that the fringe period can be tuned over a range of 410 nm - 13 µm by changing the angle of incidence and inverting the beam scan direction. Fine control over the lateral dimensions, thickness, surface depression and optical contrast of the fringes is obtained via adjustment of pulse number, fluence and spot size. Large-area, highly homogeneous gratings composed of amorphous fringes with micrometer width and millimeter length can readily be fabricated. The here presented fabrication technique is expected to have applications in the fields of optics, nanoelectronics, and mechatronics and should be applicable to other materials.

12.
ACS Appl Mater Interfaces ; 8(27): 17028-32, 2016 Jul 13.
Article in English | MEDLINE | ID: mdl-27336194

ABSTRACT

We report a laser-based approach for the fast fabrication of high-optical-quality polymeric microlenses and microlens arrays with controllable geometry and size. Our strategy consists of the direct laser printing of microdroplets of a highly viscous UV prepolymer at targeted positions, followed by photocuring. We study the morphological characteristics and imaging performance of the microlenses as a function of the substrate and laser parameters and investigate optimal printing conditions and printing mechanisms. We show that the microlens size and focusing properties can be easily tuned by the laser pulse energy, with minimum volumes below 20 fL and focal lengths ranging from 7 to 50 µm.

13.
Sci Rep ; 5: 16199, 2015 Nov 06.
Article in English | MEDLINE | ID: mdl-26541765

ABSTRACT

When a drop of liquid falls onto a screen, e.g. a cell phone, the pixels lying underneath appear magnified. This lensing effect is a combination of the curvature and refractive index of the liquid droplet. Here, the spontaneous formation of such lenses is exploited to overcome the diffraction limit of a conventional laser direct-writing system. In particular, micro-droplets are first laser-printed at user-defined locations on a surface and they are later used as lenses to focus the same laser beam. Under conditions described herein, nanopatterns can be obtained with a reduction in spot size primarily limited by the refractive index of the liquid. This all-optics approach is demonstrated by writing arbitrary patterns with a feature size around 280 nm, about one fourth of the processing wavelength.

SELECTION OF CITATIONS
SEARCH DETAIL
...