Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Inorg Chem ; 62(1): 318-335, 2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36541860

ABSTRACT

Contemporary electrocatalysts for the reduction of CO2 often suffer from low stability, activity, and selectivity, or a combination thereof. Mn-carbonyl complexes represent a promising class of molecular electrocatalysts for the reduction of CO2 to CO as they are able to promote this reaction at relatively mild overpotentials, whereby rare-earth metals are not required. The electronic and geometric structure of the reaction center of these molecular electrocatalysts is precisely known and can be tuned via ligand modifications. However, ligand characteristics that are required to achieve high catalytic turnover at minimal overpotential remain unclear. We consider 55 Mn-carbonyl complexes, which have previously been synthesized and characterized experimentally. Four intermediates were identified that are common across all catalytic mechanisms proposed for Mn-carbonyl complexes, and their structures were used to calculate descriptors for each of the 55 Mn-carbonyl complexes. These electronic-structure-based descriptors encompass the binding energies, the highest occupied and lowest unoccupied molecular orbitals, and partial charges. Trends in turnover frequency and overpotential with these descriptors were analyzed to afford meaningful physical insights into what ligand characteristics lead to good catalytic performance, and how this is affected by the reaction conditions. These insights can be expected to significantly contribute to the rational design of more active Mn-carbonyl electrocatalysts.

2.
Chem Sci ; 12(38): 12704-12710, 2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34703556

ABSTRACT

The reaction kinetics of many metal redox couples on electrode surfaces are enhanced in the presence of halides (i.e., Cl-, Br-, I-). Using first-principles metadynamics simulations, we show a correlation between calculated desorption barriers of V3+-anion complexes bound to graphite via an inner-sphere anion bridge and experimental V2+/V3+ kinetic measurements on edge plane pyrolytic graphite in H2SO4, HCl, and HI. We extend this analysis to V2+/V3+, Cr2+/Cr3+, and Cd0/Cd2+ reactions on a mercury electrode and demonstrate that reported kinetics in acidic electrolytes for these redox couples also correlate with the predicted desorption barriers of metal-anion complexes. Therefore, the desorption barrier of the metal-anion surface intermediate is a descriptor of kinetics for many metal redox couple/electrode combinations in the presence of halides. Knowledge of the metal-anion surface intermediates can guide the design of electrolytes and electrocatalysts with faster kinetics for redox reactions of relevance to energy and environmental applications.

3.
J Am Chem Soc ; 142(37): 15907-15916, 2020 09 16.
Article in English | MEDLINE | ID: mdl-32791833

ABSTRACT

The restructuring of interfaces plays a crucial role in materials science and heterogeneous catalysis. Bimetallic systems, in particular, often adopt very different compositions and morphologies at surfaces compared to the bulk. For the first time, we reveal a detailed atomistic picture of long-time scale restructuring of Pd deposited on Ag using microscopy, spectroscopy, and novel simulation methods. By developing and performing accelerated machine-learning molecular dynamics followed by an automated analysis method, we discover and characterize previously unidentified surface restructuring mechanisms in an unbiased fashion, including Pd-Ag place exchange and Ag pop-out as well as step ascent and descent. Remarkably, layer-by-layer dissolution of Pd into Ag is always preceded by an encapsulation of Pd islands by Ag, resulting in a significant migration of Ag out of the surface and a formation of extensive vacancy pits within a period of microseconds. These metastable structures are of vital catalytic importance, as Ag-encapsulated Pd remains much more accessible to reactants than bulk-dissolved Pd. Our approach is broadly applicable to complex multimetallic systems and enables the previously intractable mechanistic investigation of restructuring dynamics at atomic resolution.

4.
J Phys Chem B ; 123(42): 8910-8915, 2019 10 24.
Article in English | MEDLINE | ID: mdl-31560539

ABSTRACT

Increasing the accuracy of the evaluation of ligand-binding energies is one of the most important tasks of current computational biology. Here we explore the accuracy of free energy perturbation (FEP) approaches by comparing the performance of a "regular" FEP method to the one using replica exchange to enhance the sampling on a well-defined benchmark. The examination was limited to the so-called alchemical perturbations which are restricted to a fragment of the drug, and therefore, the calculation is a relative one rather than the absolute binding energy of the drug. Overall, our calculations reach the 1 kcal/mol accuracy limit. It is also shown that the accurate prediction of the position of water molecules around the binding pocket is important for FEP calculations. Interestingly, the replica exchange method does not significantly improve the accuracy of binding energies, suggesting that we reach the limit where the force field quality is a critical factor for accurate calculations.


Subject(s)
Thrombin/antagonists & inhibitors , Thrombin/chemistry , Catalytic Domain , Computer Simulation , Protein Binding , Protein Conformation , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...