Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-21249921

ABSTRACT

Antibody tests are essential tools to investigate humoral immunity following SARS-CoV-2 infection. While first-generation antibody tests have primarily provided qualitative results with low specificity, accurate seroprevalence studies and tracking of antibody levels over time require highly specific, sensitive and quantitative test setups. Here, we describe two quantitative ELISA antibody tests based on the SARS-CoV-2 spike receptor-binding domain and the nucleocapsid protein. Comparative expression in bacterial, insect, mammalian and plant-based platforms enabled the identification of new antigen designs with superior quality and high suitability as diagnostic reagents. Both tests scored excellently in clinical validations with multi-centric specificity and sensitivity cohorts and showed unprecedented correlation with SARS-CoV-2 neutralization titers. Orthogonal testing increased assay specificity to 99.8%, thereby enabling robust serodiagnosis in low-prevalence settings. The inclusion of a calibrator permits accurate quantitative monitoring of antibody concentrations in samples collected at different time points during the acute and convalescent phase of COVID-19.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-20226449

ABSTRACT

BackgroundSerological tests are widely used in various medical disciplines for diagnostic and monitoring purposes. Unfortunately, the sensitivity and specificity of test systems is often poor, leaving room for false positive and false negative results. However, conventional methods used to increase specificity decrease sensitivity and vice versa. Using SARS-CoV-2 serology as an example, we propose here a novel testing strategy: the "Sensitivity Improved Two-Test" or " SIT2" algorithm. MethodsSIT2 involves confirmatory re-testing of samples with results falling in a predefined retesting-zone of an initial screening test, with adjusted cut-offs to increase sensitivity. We verified and compared the performance of SIT2 to single tests and orthogonal testing (OTA) in an Austrian cohort (1,117 negative, 64 post-COVID positive samples) and validated the algorithm in an independent British cohort (976 negatives, 536 positives). ResultsThe specificity of SIT2 was superior to single tests and non-inferior to OTA. The sensitivity was maintained or even improved using SIT2 when compared to single tests or OTA. SIT2 allowed correct identification of infected individuals even when a live virus neutralization assay could not detect antibodies. Compared to single testing or OTA, SIT2 significantly reduced total test errors to 0.46% (0.24-0.65) or 1.60% (0.94-2.38) at both 5% or 20% seroprevalence. ConclusionFor SARS-CoV-2 serology, SIT2 proved to be the best diagnostic choice at both 5% and 20% seroprevalence in all tested scenarios. It is an easy to apply algorithm and can potentially be helpful for the serology of other infectious diseases.

SELECTION OF CITATIONS
SEARCH DETAIL
...