Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Front Behav Neurosci ; 14: 31, 2020.
Article in English | MEDLINE | ID: mdl-32210774

ABSTRACT

Behavioral sensitization is a process of neuroadaptation characterized by a gradual increase in motor behaviors. The major neural substrates involved in the behavioral sensitization lie on the dopaminergic mesocorticolimbic pathway, which is still under development during adolescence. To investigate age-differences in ethanol behavioral sensitization and dopamine levels in distinct brain regions of the reward system, adolescent and adult mice were repeatedly pretreated with saline or ethanol (2.0 g/kg i.p.) during 15 consecutive days and challenged with saline or ethanol 5 days after pretreatment. Dopamine and its metabolites were measured in tissue samples of the prefrontal cortex (PFC), nucleus accumbens (NAc) and striatum by HPLC analysis. While repeated ethanol administration resulted in the development of locomotor sensitization in both adult and adolescent mice, only the adults expressed sensitization to a subsequent ethanol challenge injection. Neurochemical results showed reduced dopamine levels in adolescents compared to adults. Specifically, mice pretreated with ethanol during adolescence displayed lower dopamine levels in the PFC compared to the respective adult group in response to an ethanol challenge injection, and preadolescent mice exhibited lower dopamine levels in the NAc following an acute ethanol treatment compared to adults. These findings suggest that adolescent mice are not only less sensitive to the expression of ethanol-induced sensitization than adults, but also show lower dopamine content after ethanol exposition in the PFC and NAc.

2.
Epilepsy Behav ; 105: 106945, 2020 04.
Article in English | MEDLINE | ID: mdl-32109856

ABSTRACT

The tremor mutant phenotype results from an autosomal recessive spontaneous mutation arisen in a Swiss-Webster mouse colony. The mutant mice displayed normal development until three weeks of age when they began to present motor impairment comprised by whole body tremor, ataxia, and decreased exploratory behavior. These features increased in severity with aging suggesting a neurodegenerative profile. In parallel, they showed audiogenic generalized clonic seizures. Results from genetic mapping identified the mutation tremor on chromosome 14, in an interval of 5 cM between D14Mit37 (33.21 cM) and D14Mit115 (38.21 cM), making Early Growth Response 3 (Egr3) the main candidate gene. Comparing with wild type (WT) mice, the tremor mice showed higher hippocampal gene expression of Egr3 and Gabra1 and increased concentrations of noradrenalin (NOR; p = .0012), serotonin (5HT; p = .0083), 5-hydroxyindoleacetic acid (5-HIAA; p = .0032), γ-amino butyric acid (GABA; p = .0123), glutamate (p = .0217) and aspartate (p = .0124). In opposition, the content of glycine (p = .0168) and the vanillylmandelic acid (VMA)/NOR ratio (p = .032) were decreased. Regarding to dopaminergic system, neither dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) contents nor the turnover rate of DA showed statistically significant differences between WT and mutant mice. Data demonstrated that audiogenic seizures of tremor mice are associated with progressive motor impairment as well as to hippocampal alterations of the Egr3 and Gabra1 gene expression and amino acid and monoamine content. In addition, the tremor mice could be useful for study of neurotransmission pathways as modulators of epilepsy and the pathogenesis of epilepsies occurring with generalized clonic seizures.


Subject(s)
Acoustic Stimulation/adverse effects , Epilepsy, Reflex/genetics , Epilepsy, Reflex/metabolism , Mutation/genetics , Tremor/genetics , Tremor/metabolism , Animals , Disease Models, Animal , Dopamine/metabolism , Female , Glutamic Acid/metabolism , Hippocampus/chemistry , Hippocampus/metabolism , Male , Mice , Mice, Transgenic , Norepinephrine/metabolism , Seizures/genetics , Seizures/metabolism , Serotonin/metabolism
3.
Epilepsy Behav. ; 105: 106945, 2020.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17469

ABSTRACT

The tremor mutant phenotype results from an autosomal recessive spontaneous mutation arisen in a Swiss–Webster mouse colony. The mutant mice displayed normal development until three weeks of age when they began to present motor impairment comprised by whole body tremor, ataxia, and decreased exploratory behavior. These features increased in severity with aging suggesting a neurodegenerative profile. In parallel, they showed audiogenic generalized clonic seizures. Results from genetic mapping identified the mutation tremor on chromosome 14, in an interval of 5 cM between D14Mit37 (33.21cM) and D14Mit115 (38.21cM), making Early Growth Response 3 (Egr3) the main candidate gene. Comparing with wild type (WT) mice, the tremor mice showed higher hippocampal gene expression of Egr3 and Gabra1 and increased concentrations of noradrenalin (NOR; p=.0012), serotonin (5HT; p=.0083), 5-hydroxyindoleacetic acid (5-HIAA; p=.0032), gama-amino butyric acid (GABA; p=.0123), glutamate (p=.0217) and aspartate (p=.0124). In opposition, the content of glycine (p=.0168) and the vanillylmandelic acid (VMA)/NOR ratio (p=.032) were decreased. Regarding to dopaminergic system, neither dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) contents nor the turnover rate of DA showed statistically significant differences between WT and mutant mice. Data demonstrated that audiogenic seizures of tremor mice are associated with progressive motor impairment as well as to hippocampal alterations of the Egr3 and Gabra1 gene expression and amino acid and monoamine content. In addition, the tremor mice could be useful for study of neurotransmission pathways as modulators of epilepsy and the pathogenesis of epilepsies occurring with generalized clonic seizures.

4.
Epilepsy Behav, v. 105, 106945, fev. 2020
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2955

ABSTRACT

The tremor mutant phenotype results from an autosomal recessive spontaneous mutation arisen in a Swiss–Webster mouse colony. The mutant mice displayed normal development until three weeks of age when they began to present motor impairment comprised by whole body tremor, ataxia, and decreased exploratory behavior. These features increased in severity with aging suggesting a neurodegenerative profile. In parallel, they showed audiogenic generalized clonic seizures. Results from genetic mapping identified the mutation tremor on chromosome 14, in an interval of 5 cM between D14Mit37 (33.21cM) and D14Mit115 (38.21cM), making Early Growth Response 3 (Egr3) the main candidate gene. Comparing with wild type (WT) mice, the tremor mice showed higher hippocampal gene expression of Egr3 and Gabra1 and increased concentrations of noradrenalin (NOR; p=.0012), serotonin (5HT; p=.0083), 5-hydroxyindoleacetic acid (5-HIAA; p=.0032), gama-amino butyric acid (GABA; p=.0123), glutamate (p=.0217) and aspartate (p=.0124). In opposition, the content of glycine (p=.0168) and the vanillylmandelic acid (VMA)/NOR ratio (p=.032) were decreased. Regarding to dopaminergic system, neither dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) contents nor the turnover rate of DA showed statistically significant differences between WT and mutant mice. Data demonstrated that audiogenic seizures of tremor mice are associated with progressive motor impairment as well as to hippocampal alterations of the Egr3 and Gabra1 gene expression and amino acid and monoamine content. In addition, the tremor mice could be useful for study of neurotransmission pathways as modulators of epilepsy and the pathogenesis of epilepsies occurring with generalized clonic seizures.

5.
Pharmacol Biochem Behav ; 181: 1-8, 2019 06.
Article in English | MEDLINE | ID: mdl-30946884

ABSTRACT

Varenicline is a drug used for smoking addiction cessation treatment and acts as a partial agonist of nicotinic cholinergic receptors. Recent clinical trial data support use of varenicline for treatment of conditions/addictions that are not related to smoking cessation. Considering the importance of this issue and the need for new studies on its effects, especially on behavior, more studies using animal models are necessary. Thus, the aim of this study was to evaluate the effects of prolonged exposure to varenicline in anxiety-like behavior and memory, as well as in cerebral neurochemistry of rats. Male rats received three different doses of varenicline: 0.03 (therapeutic dose for humans), 0.1 and 0.3 mg/kg orally (gavage) for 30 days. Animal behavior was analyzed through open field, elevated plus maze, light/dark box, social interaction, Barnes maze and novel object recognition tests. Neurotransmitter levels and their metabolites in different brain structures (hippocampus, striatum and frontal cortex) were measured. Results showed that prolonged exposure of rats to varenicline: 1) did not interfere in motor activity, but caused an anxiogenic effect on elevated plus maze, light/dark box and social interaction testes; 2) did not alter memory; and 3) promoted alterations on serotoninergic system in the striatum and frontal cortex. In conclusion, compilation of the data indicates that prolonged exposure of rats to varenicline promoted anxiogenic effects and alteration in serotonergic system, which corroborated behavioral findings.


Subject(s)
Anxiety/chemically induced , Memory/drug effects , Nicotinic Agonists/pharmacology , Serotonergic Neurons/drug effects , Varenicline/pharmacology , Analysis of Variance , Animals , Behavior, Animal/drug effects , Cognition/drug effects , Hippocampus/drug effects , Hippocampus/metabolism , Male , Models, Animal , Motor Activity/drug effects , Nicotine/antagonists & inhibitors , Nicotinic Agonists/administration & dosage , Rats , Rats, Wistar , Serotonin/metabolism , Smoking/drug therapy , Smoking Cessation/methods , Varenicline/administration & dosage , alpha7 Nicotinic Acetylcholine Receptor/agonists , gamma-Aminobutyric Acid/metabolism
6.
Vet Sci ; 6(1)2019 Jan 09.
Article in English | MEDLINE | ID: mdl-30634470

ABSTRACT

Heat stress has been related to the impairment of behavioral and immunological parameters in broiler chickens. However, the literature is not clear on the involvement of neuroimmune interactions in a heat stress situation associated with bacterial and parasitic infections. The present study evaluated the production of monoamines and their metabolites in brain regions (rostral pallium, hypothalamus, brain stem, and midbrain) in broiler chickens submitted to chronic heat stress and/or infection and co-infection with Eimeria spp. and Clostridium perfringens type A. The heat stress and avian necrotic enteritis (NE) modulated the neurochemical profile of monoamines in different areas of the central nervous system, in particular, those related to the activity of the hypothalamus-hypophysis-adrenal (HPA) axis that is responsible for sickness behavior. C. perfringens and/or Eimeria infection, heat stress increased 5-hydroxytryptamine (5-HT), 4,4 dihydroxyphenylacetic acid (DOPAC), and DOPAC/dopamine (DA) in the rostral pallium; 3-methoxy-4-hydroxyphenylethylene glycol (MHPG), homovanillic acid (HVA), HVA/DA, DOPAC/DA, and 5-hydroxyindoleacetic acid (5-HIAA)/5-HT in the hypothalamus; MHPG, 5-HIAA/5-HT, DOPAC/DA, and HVA/DA in the midbrain; and MHPG, DOPAC, HVA, HVA/DA, DOPAC/DA, and 5-HIAA/5-HT in the brainstem. Heat stress decreased noradrenaline + norepinephrine (NOR + AD) in all brain regions analyzed; 5-HT in the hypothalamus, midbrain, and brainstem; and DA in the midbrain. The results also showed the existence and activity of the brain-gut axis in broiler chickens. The brain neurochemical profile and corticosterone production are consistent with those observed in chronic stressed mammals, in animals with sickness behavior, and an overloading of the HPA axis.

7.
Behav Brain Res ; 359: 958-966, 2019 02 01.
Article in English | MEDLINE | ID: mdl-29913187

ABSTRACT

Otoconia are crucial for the correct processing of positional information and orientation. Mice lacking otoconia cannot sense the direction of the gravity vector and cannot swim properly. This study aims to characterize the behavior of mergulhador (mlh), otoconia-deficient mutant mice. Additionally, the central catecholamine levels were evaluated to investigate possible correlations between behaviors and central neurotransmitters. A sequence of behavioral tests was used to evaluate the parameters related to the general activity, sensory nervous system, psychomotor system, and autonomous nervous system, in addition to measuring the acquisition of spatial and declarative memory, anxiety-like behavior, motor coordination, and swimming behavior of the mlh mutant mice. As well, the neurotransmitter levels in the cerebellum, striatum, frontal cortex, and hippocampus were measured. Relative to BALB/c mice, the mutant mlh mice showed 1) reduced locomotor and rearing behavior, increased auricular and touch reflexes, decreased motor coordination and increased micturition; 2) decreased responses in the T-maze and aversive wooden beam tests; 3) increased time of immobility in the tail suspension test; 4) no effects in the elevated plus maze or object recognition test; 5) an inability to swim; and 6) reduced turnover of dopaminergic system in the cerebellum, striatum, and frontal cortex. Thus, in our mlh mutant mice, otoconia deficiency reduced the motor, sensory and spatial learning behaviors likely by impairing balance. We did not rule out the role of the dopaminergic system in all behavioral deficits of the mlh mutant mice.


Subject(s)
Membrane Proteins/genetics , Mutation/genetics , Neurotransmitter Agents/metabolism , Otolithic Membrane/pathology , Vestibular Diseases/genetics , Animals , Exploratory Behavior/physiology , Hindlimb Suspension , Male , Maze Learning/physiology , Mice , Mice, Inbred BALB C , Mice, Mutant Strains , Motor Activity , Psychomotor Performance/physiology , Recognition, Psychology/physiology , Spatial Learning , Swimming , Vestibular Diseases/etiology
8.
Pharmacol Biochem Behav ; 181: p. 1-8, 2019.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15967

ABSTRACT

Varenicline is a drug used for smoking addiction cessation treatment and acts as a partial agonist of nicotinic cholinergic receptors. Recent clinical trial data support use of varenicline for treatment of conditions/addictions that are not related to smoking cessation. Considering the importance of this issue and the need for new studies on its effects, especially on behavior, more studies using animal models are necessary. Thus, the aim of this study was to evaluate the effects of prolonged exposure to varenicline in anxiety-like behavior and memory, as well as in cerebral neurochemistry of rats. Male rats received three different doses of varenicline: 0.03 (therapeutic dose for humans), 0.1 and 0.3?mg/kg orally (gavage) for 30?days. Animal behavior was analyzed through open field, elevated plus maze, light/dark box, social interaction, Barnes maze and novel object recognition tests. Neurotransmitter levels and their metabolites in different brain structures (hippocampus, striatum and frontal cortex) were measured. Results showed that prolonged exposure of rats to varenicline: 1) did not interfere in motor activity, but caused an anxiogenic effect on elevated plus maze, light/dark box and social interaction testes; 2) did not alter memory; and 3) promoted alterations on serotoninergic system in the striatum and frontal cortex. In conclusion, compilation of the data indicates that prolonged exposure of rats to varenicline promoted anxiogenic effects and alteration in serotonergic system, which corroborated behavioral findings.

9.
Pharmacol Biochem Behav, v. 181, p. 1-8, jun. 2019
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2734

ABSTRACT

Varenicline is a drug used for smoking addiction cessation treatment and acts as a partial agonist of nicotinic cholinergic receptors. Recent clinical trial data support use of varenicline for treatment of conditions/addictions that are not related to smoking cessation. Considering the importance of this issue and the need for new studies on its effects, especially on behavior, more studies using animal models are necessary. Thus, the aim of this study was to evaluate the effects of prolonged exposure to varenicline in anxiety-like behavior and memory, as well as in cerebral neurochemistry of rats. Male rats received three different doses of varenicline: 0.03 (therapeutic dose for humans), 0.1 and 0.3?mg/kg orally (gavage) for 30?days. Animal behavior was analyzed through open field, elevated plus maze, light/dark box, social interaction, Barnes maze and novel object recognition tests. Neurotransmitter levels and their metabolites in different brain structures (hippocampus, striatum and frontal cortex) were measured. Results showed that prolonged exposure of rats to varenicline: 1) did not interfere in motor activity, but caused an anxiogenic effect on elevated plus maze, light/dark box and social interaction testes; 2) did not alter memory; and 3) promoted alterations on serotoninergic system in the striatum and frontal cortex. In conclusion, compilation of the data indicates that prolonged exposure of rats to varenicline promoted anxiogenic effects and alteration in serotonergic system, which corroborated behavioral findings.

10.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1065-1066: 8-13, 2017 Oct 15.
Article in English | MEDLINE | ID: mdl-28938132

ABSTRACT

Agricultural pesticides used with the criminal intent to intoxicate domestic and wild animals are a serious concern in Veterinary Medicine. In order to identify the pesticide carbofuran and its metabolite 3- hydroxycarbofuran in animals suspected of exogenous intoxication a high pressure liquid chromatography with diode array detector (HPLC-DAD) method was developed and validated in stomach contents, liver, vitreous humor and blood. The method was evaluated using biological samples from seven different animal species. The following parameters of analytical validation were evaluated: linearity, precision, accuracy, selectivity, recovery and matrix effect. The method was linear at the range of 6.25-100µg/mL and the correlation coefficient (r2) values were >0.9811 for all matrices. The precision and accuracy of the method was determined by coefficient of variation (CV) and the relative standard deviation error (RSE), and both were less than 15%. Recovery ranged from 74.29 to 100.1% for carbofuran and from 64.72 to 100.61% for 3-hydroxycarbofuran. There were no significant interfering peaks or matrix effects. This method was suitable for detecting 25 positive cases for carbofuran amongst a total of 64 animal samples suspected of poisoning brought to the Toxicology Diagnostic Laboratory, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo.


Subject(s)
Carbofuran/analogs & derivatives , Carbofuran/analysis , Chromatography, High Pressure Liquid/methods , Forensic Medicine/methods , Poisoning/diagnosis , Poisoning/veterinary , Veterinary Medicine/methods , Animals , Carbofuran/blood , Carbofuran/chemistry , Cats , Dogs , Gastrointestinal Contents/chemistry , Limit of Detection , Linear Models , Liver/chemistry , Reproducibility of Results , Vitreous Body/chemistry
11.
Toxicology ; 376: 44-50, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-27129946

ABSTRACT

Crack cocaine has a high potential to induce cocaine addiction and its smoke contains cocaine's pyrolysis product anhydroecgonine methyl ester (AEME), a partial agonist at M1- and M3-muscarinic acetylcholine receptor and an antagonist at the remaining subtypes. No reports have assessed AEME's role in addiction. Adult male Wistar rats were intraperitoneally administered with saline, 3mg/kg AEME, 15mg/kg cocaine, or a cocaine-AEME combination on every other day during a period of 9 days. After a 7-days withdrawal period, a challenge injection of the respective drugs was performed on the 17th day. The locomotor activity was evaluated on days 1, 3, 5, 7, 9 and 17, as well as dopamine levels (9th day) and dopaminergic receptors proteins (D1R and D2R on the 17th day) in the caudate-putamen (CPu) and nucleus accumbens (NAc). AEME was not able to induce the expression of behavioral sensitization, but it substantially potentiates cocaine-effects, with cocaine-AEME combination presenting higher expression than cocaine alone. An increase in the dopamine levels in the CPu in all non-saline groups was observed, with the highest levels in the cocaine-AEME group. There was a decrease in D1R protein level in this brain region only for cocaine and cocaine-AEME groups. In the NAc, an increase in the dopamine levels was only observed for cocaine and cocaine-AEME groups, with no changes in both D1R and D2R protein levels. These behavioral and neurochemical data indicate that AEME alone does not elicit behavioral sensitization but it significantly potentiates cocaine effects when co-administered, resulting in dopamine increase in CPu and NAc, brain regions where dopamine release is mediated by cholinergic activity.


Subject(s)
Cocaine/analogs & derivatives , Cocaine/administration & dosage , Cocaine/metabolism , Dopamine/metabolism , Motor Activity/drug effects , Animals , Brain/drug effects , Brain/metabolism , Drug Synergism , Male , Motor Activity/physiology , Rats , Rats, Wistar , Receptors, Dopamine/metabolism
12.
Toxicology ; 376: 44-50, 2017.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15482

ABSTRACT

Crack cocaine has a high potential to induce cocaine addiction and its smoke contains cocaine's pyrolysis product anhydroecgonine methyl ester (AEME), a partial agonist at M-1- and M-3-muscarinic acetylcholine receptor and an antagonist at the remaining subtypes. No reports have assessed AEME's role in addiction. Adult male Wistar rats were intraperitoneally administered with saline, 3 mg/kg AEME, 15 mg/kg cocaine, or a cocaine-AEME combination on every other day during a period of 9 days. After a 7-days withdrawal period, a challenge injection of the respective drugs was performed on the 17th day. The locomotor activity was evaluated on days 1, 3, 5, 7, 9 and 17, as well as dopamine levels (9th day) and dopaminergic receptors proteins (D1R and D2R on the 17th day) in the caudate-putamen (CPu) and nucleus accumbens (NAc). AEME was not able to induce the expression of behavioral sensitization, but it substantially potentiates cocaine-effects, with cocaine-AEME combination presenting higher expression than cocaine alone. An increase in the dopamine levels in the CPu in all non-saline groups was observed, with the highest levels in the cocaine-AEME group. There was a decrease in D1R protein level in this brain region only for cocaine and cocaine-AEME groups. In the NAc, an increase in the dopamine levels was only observed for cocaine and cocaine-AEME groups, with no changes in both D1R and D2R protein levels. These behavioral and neurochemical data indicate that AEME alone does not elicit behavioral sensitization but it significantly potentiates cocaine effects when co-administered, resulting in dopamine increase in CPu and NAc, brain regions where dopamine release is mediated by cholinergic activity.

13.
Avian Pathol ; 44(6): 490-7, 2015.
Article in English | MEDLINE | ID: mdl-26397826

ABSTRACT

We analysed the effects of cold stress (19 ± 1°C, 6 h /day, from the first to the seventh day of life) applied to specific pathogen free (SPF) chickens. On experimental Day 1 (ED1), chicks were divided into four groups: C (not infected and kept under thermoneutral condition); CS (not infected and cold stressed); PC (Salmonella Heidelberg (SH) infected and kept under thermoneutral condition) and PCS (SH infected and cold stressed). High concentrations of corticosterone were found in the cold stressed birds on ED7 and ED21, with a greater increase in birds of the PCS group. Stress or non-stressed SH-infected birds had high levels of norepinephrine on ED21. On ED21, an increased percentage and number of SH were found in birds of the PCS group. On ED7, a decrease in macrophages presenting MHCII, CD8(+) and CD8(+) γδ cells was observed in the chickens of the CS group. Decrease was observed in CD3(+) cells in the birds of the PCS group and increase in macrophages presenting MHCII cells and of the CD4(+)/CD8(+) ratio in chickens of the CS group on ED21. There was a decrease in CD8(+) γδ cells in birds of the CS group on ED21 and in the CD3(+) and CD8(+)cell numbers in chickens of the PCS group on ED21. Our results suggest that cold stress applied to chickens in the first 7 days of life increases both the hypothalamus pituitary adrenal axis and the sympathetic nervous system activities, leading to long-term immune cell dysfunction, thus allowing increased SH invasion and persistence within the birds' body.


Subject(s)
Chickens/immunology , Poultry Diseases/immunology , Salmonella Infections, Animal/immunology , Salmonella/immunology , Animals , Bacterial Load , Catecholamines/blood , Chickens/microbiology , Cold Temperature , Corticosterone/blood , Immunity , Macrophages/immunology , Poultry Diseases/microbiology , Salmonella/isolation & purification , Salmonella Infections, Animal/microbiology , Specific Pathogen-Free Organisms , Stress, Physiological
14.
Int J Dev Neurosci ; 47(Pt B): 157-64, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26416213

ABSTRACT

Pyrrolizidine alkaloids (PAs) are toxins that are exclusively biosynthesized by plants and are commonly present in foods and herbs. PAs are usually associated with poisoning events in livestock and human beings. The aim of the present study was to evaluate the behavioral and neurochemical effects of prenatal exposure to PA integerrimine N-oxide of rats in adulthood. Pregnant Wistar rats received integerrimine N-oxide from the butanolic residue of Senecio brasiliensis by gavage on gestational days 6-20 at doses of 3, 6 and 9 mg/kg. During adulthood of the offspring, the following behavioral tests were performed: open-field, plus-maze, forced swimming, catalepsy and stereotypy. Histological analyses and monoamine levels were measured. Male offspring from dams that were exposed to 9 mg/kg showed an increase in locomotion in the open-field test, an increased frequency of entries and time spent in open arms in elevated plus-maze test, as well as decreased swimming time. In the female offspring from dams that were exposed to 9 mg/kg, there was an increased time of climbing in forced swimming and intensity of stereotyped behavior. The histological study indicates an increase in the number of multinucleated cells in the liver (6 and 9 mg/kg). In neurotransmitter analysis, specifically in the striatum, we observed change in dopamine and serotonin levels in the middle dose. Thus, our results indicate that prenatal exposure to integerrimine N-oxide changed behavior in adulthood and neurotransmitter levels in the striatum. Our results agree with previous studies, which showed that integerrimine N-oxide impaired physical and neurobehavioral development in childhood that can persist until adulthood.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Behavior, Animal/drug effects , Corpus Striatum/drug effects , Neurotransmitter Agents/metabolism , Prenatal Exposure Delayed Effects , Pyrrolizidine Alkaloids/pharmacology , Age Factors , Alanine Transaminase/blood , Animals , Antineoplastic Agents, Phytogenic/chemistry , Aspartate Aminotransferases/blood , Blood Proteins/metabolism , Catalepsy/chemically induced , Corpus Striatum/metabolism , Dose-Response Relationship, Drug , Exploratory Behavior/drug effects , Female , Male , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/pathology , Prenatal Exposure Delayed Effects/physiopathology , Pyrrolizidine Alkaloids/chemistry , Rats , Rats, Wistar , Sex Factors , Stereotyped Behavior/drug effects , Swimming/psychology , gamma-Glutamyltransferase/blood
15.
J Ethnopharmacol ; 137(1): 828-36, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21767622

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The essential oil (EO) from Cymbopogon citratus (DC) Stapf is reported to have a wide range of biological activities and is widely used in traditional medicine as an infusion or decoction. However, despite this widely use, there are few controlled studies confirming its biological activity in central nervous system. MATERIALS AND METHODS: The anxiolytic-like activity of the EO was investigated in light/dark box (LDB) and marble-burying test (MBT) and the antidepressant activity was investigated in forced-swimming test (FST) in mice. Flumazenil, a competitive antagonist of benzodiazepine binding and the selective 5-HT(1A) receptor antagonist WAY100635 was used in experimental procedures to determine the action mechanism of EO. To exclude any false positive results in experimental procedures, mice were submitted to the rota-rod test. We also quantified some neurotransmitters at specific brain regions after EO oral acute treatment. RESULTS: The present work found anxiolytic-like activity of the EO at the dose of 10mg/kg in a LDB. Flumazenil, but not WAY100635, was able to reverse the effect of the EO in the LDB, indicating that the EO activity occurs via the GABA(A) receptor-benzodiazepine complex. Only at higher doses did the EO potentiate diethyl-ether-induced sleeping time in mice. In the FST and MBT, EO showed no effect. Finally, the increase in time spent in the light chamber, demonstrated by concomitant treatment with ineffective doses of diazepam (DZP) and the EO, revealed a synergistic effect of the two compounds. The lack of activity after long-term treatment in the LDB test might be related to tolerance induction, even in the DZP-treated group. Furthermore, there were no significant differences between groups after either acute or repeated treatments with the EO in the rota-rod test. Neurochemical evaluation showed no amendments in neurotransmitter levels evaluated in cortex, striatum, pons, and hypothalamus. CONCLUSIONS: The results corroborate the use of Cymbopogon citratus in folk medicine and suggest that the anxiolytic-like effect of its EO is mediated by the GABA(A) receptor-benzodiazepine complex.


Subject(s)
Anti-Anxiety Agents/pharmacology , Anxiety/drug therapy , Behavior, Animal/drug effects , Cymbopogon , GABA-A Receptor Agonists/pharmacology , Oils, Volatile/pharmacology , Plant Oils/pharmacology , Animals , Anti-Anxiety Agents/chemistry , Anti-Anxiety Agents/isolation & purification , Anxiety/metabolism , Anxiety/psychology , Cymbopogon/chemistry , Disease Models, Animal , Dose-Response Relationship, Drug , Flumazenil/pharmacology , GABA Modulators/pharmacology , GABA-A Receptor Agonists/chemistry , GABA-A Receptor Agonists/isolation & purification , Male , Mice , Motor Activity/drug effects , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Piperazines/pharmacology , Plant Leaves , Plant Oils/chemistry , Plant Oils/isolation & purification , Plants, Medicinal , Pyridines/pharmacology , Serotonin Antagonists/pharmacology , Sleep/drug effects
16.
Physiol Behav ; 104(3): 417-22, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21570993

ABSTRACT

Prenatal lipopolysaccharide (LPS) exposure causes reproductive, behavioral and neurochemical defects in both dams and pups. The present study evaluated male rats prenatally treated with LPS for behavioral and neurological effects related to the olfactory system, which is the main sensorial path in rodents. Pregnant Wistar rats received 100 µg/kg of LPS intraperitoneally (i.p.) on gestational day (GD) 9.5, and maternal behavior was evaluated. Pups were evaluated for (1) maternal odor preference, (2) aversion to cat odor, (3) monoamine levels and turnover in the olfactory bulb (OB) and (4) protein expression (via immunoblotting) within the OB dopaminergic system and glial cells. Results showed that prenatal LPS exposure impaired maternal preference and cat odor aversion and decreased dopamine (DA) levels in the OB. This dopaminergic impairment may have been due to defects in another brain area given that protein expression of the first enzyme in the DA biosynthetic pathway was unchanged in the OB. Moreover, there was no change in the protein expression of the DA receptors. The fact that the number of astrocytes and microglia was not increased suggests that prenatal LPS did not induce neuroinflammation in the OB. Furthermore, given that maternal care was not impaired, abnormalities in the offspring were not the result of reduced maternal care.


Subject(s)
Lipopolysaccharides/toxicity , Olfactory Perception/drug effects , Perceptual Disorders/etiology , Prenatal Exposure Delayed Effects/physiopathology , Age Factors , Analysis of Variance , Animals , Animals, Newborn , Biogenic Monoamines/metabolism , CD11b Antigen/metabolism , Female , Glial Fibrillary Acidic Protein/metabolism , Male , Maternal Behavior/drug effects , Odorants , Olfactory Bulb/metabolism , Perceptual Disorders/pathology , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Rats , Receptors, Dopamine/metabolism
17.
Behav Brain Res ; 211(1): 77-82, 2010 Jul 29.
Article in English | MEDLINE | ID: mdl-20226214

ABSTRACT

Prenatal lipopolysaccharide (LPS) exposure causes reproductive, behavioral and neurochemical injuries in both the mother and pups. Previous investigations by our group showed that prenatal LPS administration (100 microg/kg, i.p.) on gestational day 9.5 impaired the male offspring's social behavior in infancy and adulthood. In the present study, we investigated whether these social behavioral changes were associated with motor activity impairment. Male rat pups treated prenatally with LPS or not were tested for reflexological development and open field general activity during infancy. In adulthood, animals were tested for open field general activity, haloperidol-induced catalepsy and apomorphine-induced stereotypy; striatal dopamine levels and turnover were also measured. Moreover, LPS-treated or untreated control pups were challenged with LPS in adulthood and observed for general activity in the open field. In relation to the control group, the motor behavior of prenatally treated male pups was unaffected at basal levels, both in infancy and in adulthood, but decreased general activity was observed in adulthood after an immune challenge. Also, striatal dopamine and metabolite levels were decreased in adulthood. In conclusion, prenatal LPS exposure disrupted the dopaminergic system involved with motor function, but this neurochemical effect was not accompanied by behavioral impairment, probably due to adaptive plasticity processes. Notwithstanding, behavioral impairment was revealed when animals were challenged with LPS, resulting in enhanced sickness behavior.


Subject(s)
Brain/growth & development , Lipopolysaccharides/immunology , Motor Activity/physiology , Pregnancy Complications, Infectious/immunology , Prenatal Exposure Delayed Effects , Animals , Apomorphine/pharmacology , Brain/immunology , Catalepsy/chemically induced , Dopamine/metabolism , Dopamine Agonists , Dopamine Antagonists , Exploratory Behavior/physiology , Female , Fetal Development , Haloperidol , Locomotion/physiology , Male , Neostriatum/metabolism , Pregnancy , Prenatal Exposure Delayed Effects/immunology , Rats , Rats, Wistar , Reflex , Sex Factors , Statistics, Nonparametric , Stereotyped Behavior/drug effects
18.
Neurosci Lett ; 463(3): 234-8, 2009 Oct 09.
Article in English | MEDLINE | ID: mdl-19664683

ABSTRACT

A great number of studies on scorpion venoms associate their effects to the autonomic nervous system, and few data are available about their action on the central nervous system (CNS). The aim of this work was to evaluate some central effects after intraperitoneal injection of Tityus serrulatus or T. bahiensis scorpion venoms. The hippocampal concentration of some neurotransmitters and their metabolites were determined. Electroencephalographic and behavioral observations were performed, and all brains were removed for histopathological analysis of hippocampal areas. Both venoms induced electrographic and behavioral alterations despite T. bahiensis venom affects less the electrographic activity than T. serrulatus venom. Neurochemical analysis demonstrated no alteration in the extracellular levels of almost all the neurotransmitters evaluated, at least in the hippocampus, and no neuronal loss in this area was observed. Meanwhile, extracellular concentration of HVA increased up to 10 times in approximately 1/3 of the animals of both groups. Scorpion venoms seem to exert a small but important central effect. More studies in this field are necessary because they may be useful in developing new strategies to reduce the damage caused by scorpion stings.


Subject(s)
Brain/drug effects , Scorpion Venoms/pharmacology , 3,4-Dihydroxyphenylacetic Acid/metabolism , Amino Acids/metabolism , Animals , Biogenic Monoamines/metabolism , Brain/metabolism , Electroencephalography , Hippocampus/drug effects , Hippocampus/metabolism , Homovanillic Acid/metabolism , Male , Microdialysis , Neurotransmitter Agents/metabolism , Rats , Rats, Wistar
19.
Braz. arch. biol. technol ; 52(4): 883-891, July/Aug. 2009. tab, ilus
Article in English | LILACS-Express | LILACS, Sec. Est. Saúde SP | ID: lil-525609

ABSTRACT

The present study investigated the effects of t moxidectin (MXD) in some parameters of rat motor function and neurochemical. The general activity in the open field and the motor coordination in the wooden beam were employed to evaluate the MXD effects. The results showed that, in the open field, even at high doses (2.0 and 20.0 mg/kg), the MXD did not alter the locomotion and the rearing frequencies. However, MXD was able to impair the motor coordination of the animals at wooden beam. Neurochemical studies of striatal GABA and dopamine neurotransmitters showed a reduced levels of dopamine and its metabolite, homovanillic acid, without interference on striatal GABA levels. Since GABAergic receptor stimulation had an inhibitory effect on dopaminergic striatal system, the decreased motor coordination could be attributed to an action of MXD on dopamine system via GABA activation.


A moxidectina (MXD) é uma droga antiparasitária amplamente empregada em animais domésticos; seu mecanismo de ação, em mamíferos, envolve o neurotransmissor ácido gama-aminobutírico (GABA). Esse neurotransmissor tem papel importante na função motora. Assim, no presente trabalho estudaram-se os efeitos da MXD em alguns parâmetros comportamentais ligados a função motora de ratos e também em sistemas de neurotransmissão central. A atividade geral no campo aberto e a coordenação motora na trave elevada foram empregadas para avaliar os efeitos de diferentes doses de MXD. Os resultados mostraram que: no campo aberto, mesmo as doses maiores (2.0 e 20.0 mg/kg) de MXD não alteraram as freqüências de locomoção e levantar. Por outro lado, a MXD foi capaz de prejudicar a coordenação motora dos animais avaliada na trave elevada. Estudos neuroquímicos dos níveis estriatais de GABA e dopamina mostraram redução dos níveis de dopamina e seu metabólito, ácido homavanílico, sem interferência nos níveis de GABA estriatal. Considerando que a estimulação de receptores GABAérgicos tem efeito inibidor sobre o sistema dopaminérgico estriatal, nós atribuímos a redução na coordenação motora a ação da MXD sobre o sistema dopaminérgico via ativação do GABA.

20.
Res Vet Sci ; 84(1): 100-6, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17559896

ABSTRACT

The moxidectin (MXD) is an antiparasitic drug used in domestic animals. The mechanism of action, in mammals, involves GABA, a neurotransmitter with an important role in the sexual behavior control. Presently, the effects of 0.2 mg/kg therapeutic dose were studied on sexual behavior, sexual motivation, penile erection and central GABA levels. Sexual behavior results showed increased latencies to the first mount and intromission as well as in inter-intromission interval; a reduction in total mounts was detected on the drug post-treatment. No difference was observed between sexual motivation of control and experimental animals. MXD treatment reduced penile erection and hypothalamic GABA levels. The results suggest that MXD reduced sexual behavior and penile erection by an action on the hypothalamic GABA system. Probably, the lack of effects in the motivational test and the increased mount and intromission latencies as well as decreased total mounts could be explained as a consequence of reduced male rat erection process.


Subject(s)
Anthelmintics/adverse effects , Hypothalamus/drug effects , Penile Erection/drug effects , Sexual Behavior, Animal/drug effects , gamma-Aminobutyric Acid/metabolism , Animals , Female , Hypothalamus/metabolism , Macrolides/adverse effects , Male , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...