Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Cancers (Basel) ; 16(7)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38611099

ABSTRACT

Human papillomavirus (HPV) is the second most common infectious agent causing cancer. Persistent infection with high-risk (HR)-HPV can lead to cervical intra-epithelial neoplasia and cervical carcinomas (CC). While host immune response is necessary for viral clearance, chronic immune activation contributes to a low-grade inflammation that can ultimately lead to carcinogenesis. The micro-immunotherapy medicine (MIM) 2LPAPI® could be a valuable tool to manage the clearance of the virus and reduce the risk of developing CC. In this in vitro study, we aimed to investigate its mode of action. We showed that actives from the MIM increased the IL-6, IFN-γ, and IP-10 secretion in human peripheral blood mononuclear cells (PBMCs) exposed to peptides derived from the HPV-16 capsid (HPV16(L1)). This could reflect an increase in the immune activity toward HPV-16. At the same time, some active substances reduced the lympho-proliferation and the expression of T-cell activation markers. Finally, some of the MIM actives displayed antiproliferative effects in CC-derived HeLa cells under serum-starvation conditions. Altogether, this body of data highlighted for the first time the dual effect of MIM in the framework of HR-HPV infections as a potential (i) immune modulator of HPV16(L1)-treated PBMCs and (ii) antiproliferative agent of HPV-positive CC cells.

2.
Life (Basel) ; 14(3)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38541700

ABSTRACT

As one of the major cytokines implicated in the orchestration of immune responses, interleukin 6 (IL-6) can either act as a pro- or an anti-inflammatory factor, depending on the micro-environment. In micro-immunotherapy (MI) medicines, IL-6 is employed at low doses (LD) and ultra-low doses (ULD), expressed in centesimal Hahnemannian (CH), and used alone or in combination with other immune regulators to modulate patients' immune responses. The present study focused on assessing the in vitro immune-modulatory effects of two IL-6-containing MI products: (i) the unitary IL-6 (4 CH) and (ii) the complex MI-medicine (MIM) 2LALERG®, which includes IL-6 (17 CH) in association with other actives in its formulation. Our results showed that IL-6 (4 CH) activated granulocytes under basal conditions, and natural killer cells in the presence of an anti-CD3 signal, as assessed by their CD69 expression. In addition, IL-6 (4 CH) balanced the macrophages' differentiation toward a M2a profile. On the other hand, the tested 2LALERG® capsule inhibited the histamine degranulation of rats' peritoneal mast cells and reduced the release of IL-6 itself in inflamed human macrophages. Altogether, these data provide novel pieces of evidence on the double-edged potential of the LD and ULD of IL-6 in immune responses modulation, when employed in MI.

3.
J Inflamm Res ; 17: 1161-1181, 2024.
Article in English | MEDLINE | ID: mdl-38406323

ABSTRACT

Introduction: Micro-immunotherapy (MI) is a therapeutic option employing low doses (LD) and ultra-low doses (ULD) of cytokines and immune factors to help the organism at modulating the immune responses. In an overpowering inflammatory context, this strategy may support the restoration of the body's homeostasis, as the active ingredients of MI medicines' (MIM) could boost or slow down the physiological functions of the immune cells. The aim of the study is to evaluate for the first time the in vitro anti-inflammatory properties of some actives employed by the MIM of interest in several human immune cell models. Methods: In the first part of the study, the effects of the actives from the MIM of interest were assessed from a molecular standpoint: the expression of HLA-II, interleukin (IL)-2, and the secretion of several other cytokines were evaluated. In addition, as mitochondrial metabolism is also involved in the inflammatory processes, the second part of the study aimed at assessing the effects of these actives on the mitochondrial reactive oxygen species (ROS) production and on the mitochondrial membrane potential. Results: We showed that the tested actives decreased the expression of HLA-DR and HLA-DP in IFN-γ-stimulated endothelial cells and in LPS-treated-M1-macrophages. The tested MIM slightly reduced the intracellular expression of IL-2 in CD4+ and CD8+ T-cells isolated from PMA/Iono-stimulated human PBMCs. Additionally, while the secretion of IL-2, IL-10, and IFN-γ was diminished, the treatment increased IL-6, IL-9, and IL-17A, which may correspond to a "Th17-like" secretory pattern. Interestingly, in PMA/Iono-treated PBMCs, we reported that the treatment reduced the ROS production in B-cells. Finally, in PMA/Iono-treated human macrophages, we showed that the treatment slightly protected the cells from early cell death/apoptosis. Discussion: Overall, these results provide data about the molecular and functional anti-inflammatory effects of several actives contained in the tested MIM in immune-related cells, and their impact on two mitochondria-related processes.

4.
Life (Basel) ; 14(1)2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38255717

ABSTRACT

BACKGROUND: Epstein-Barr virus (EBV) is often kept silent and asymptomatic; however, its reactivation induces a chronic and/or recurrent infection that is associated with numerous diseases, including cancer and inflammation-related disorders. As no specific treatment is currently available, the immune factors-based micro-immunotherapy (MI) medicine 2LEBV® could be considered a valuable therapeutic option to sustain the immune system in EBV reactivation. METHODS: The present work aimed to investigate, for the first time, the effect of 2LEBV® in several in vitro models of uninfected immune-related cells. RESULTS: 2LEBV® displayed phagocytosis-enhancing capabilities in granulocytes. In human peripheral blood mononuclear cells (PBMCs), it increased the intra- and extra-cellular expression of interleukin (IL)-2. Moreover, it modulated the secretion of other cytokines, increasing IL-4, IL-6, and tumor necrosis factor-α levels or lowering other cytokines levels such as IL-9. Finally, 2LEBV® reduced the expression of human leukocyte antigen (HLA)-II in endothelial cells and macrophages. CONCLUSIONS: Although these data are still preliminary and the chosen models do not consider the underlying EBV-reactivation mechanisms, they still provide a better understanding of the mechanisms of action of 2LEBV®, both at functional and molecular levels. Furthermore, they open perspectives regarding the potential targets of 2LEBV® in its employment as a therapeutic intervention for EBV-associated diseases.

5.
Int J Mol Sci ; 24(13)2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37445663

ABSTRACT

Periodontal therapies use immune mediators, but their side effects can increase with dosage. Micro-immunotherapy (MI) is a promising alternative that employs immune regulators at low and ultralow doses to minimize adverse effects. In this study, the effects of 5 capsules and the entire 10-capsule sequence of the sequential MI medicine (MIM-seq) were tested in two in vitro models of periodontitis. Firstly, human gingival fibroblasts (hGFs) exposed to interleukin (IL)-1ß to induce inflammation were treated with five different capsules of MIM-seq for 3 days or with MIM-seq for 24 days. Subsequently, MIM-seq was analyzed in a 3D model of human tissue equivalent of gingiva (GTE) under the same inflammatory stimulus. Simultaneously, a non-IL-1ß-treated control and a vehicle were included. The effects of the treatments on cytotoxicity, collagen deposition, and the secreted levels of IL-1α, IL-6, prostaglandin E2 (PGE2), matrix metalloproteinase-1 (MMP-1), and tissue inhibitor of metalloproteinases-1 (TIMP-1) were evaluated. None of the tested items were cytotoxic. The complete sequence of MIM-seq decreased PGE2 release and restored collagen deposition levels induced by IL-1ß treatment in hGFs exposed to IL-1ß. MIM-seq treatment restored collagen production levels in both models. These promising preclinical findings suggest that MIM-seq should be further investigated for periodontitis treatment.


Subject(s)
Gingiva , Periodontitis , Humans , Dinoprostone/pharmacology , Capsules , Periodontitis/therapy , Collagen/pharmacology , Immunotherapy , Fibroblasts , Cells, Cultured
6.
Int J Mol Sci ; 24(2)2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36675006

ABSTRACT

Allergic diseases consist of improper inflammatory reactions to antigens and are currently an important healthcare concern, especially considering their increasing worldwide development in recent decades. The "atopic march" defines the paradigm of allergic diseases occurring in chronological order and displaying specific spatial manifestations, as they usually start as atopic dermatitis (AD) and food allergies during infancy and progressively evolve into allergic asthma (AA) and allergic rhinitis (AR) or rhino-conjunctivitis in childhood. Many immune cell subtypes and inflammatory factors are involved in these hypersensitivity reactions. In particular, the T helpers 2 (Th2) subset, through its cytokine signatures made of interleukins (ILs), such as IL-4, IL-5, IL-10, and IL-13, as well as mast cells and their related histamine pathways, contribute greatly to the perpetuation and evolution of the atopic march. By providing low doses (LD) and ultra-low doses (ULD) of ILs and immune factors to the body, micro-immunotherapy (MI) constitutes an interesting therapeutic strategy for the management of the atopic march and its symptoms. One of the aims of this review is to shed light on the current concept of the atopic march and the underlying immune reactions occurring during the IgE-mediated responses. Moreover, the different classes of traditional and innovative treatments employed in allergic diseases will also be discussed, with a special emphasis on the potential benefits of the MI medicine 2LALERG® formulation in this context.


Subject(s)
Dermatitis, Atopic , Physiological Phenomena , Rhinitis, Allergic , Humans , Dermatitis, Atopic/therapy , Rhinitis, Allergic/therapy , Immunologic Factors , Immunotherapy
7.
J Inflamm Res ; 15: 6695-6717, 2022.
Article in English | MEDLINE | ID: mdl-36536643

ABSTRACT

Introduction: Chronic inflammation is a pernicious underlying status, well-known for its contribution to the progressive development of various diseases. In this regard, Micro-immunotherapy (MI) might be a promising therapeutic strategy. MI employs low doses (LD) and ultra-low doses (ULD) of immune regulators in their formulations. In particular, as both IL-1ß and TNF-α are often used at ULD in MI medicines (MIM), a special emphasis has been made on formulations that include these factors in their compositions. Methods: Several in vitro models have been employed in order to assess the effects of two unitary MIM consisting of ULD of IL-1ß and TNF-α (u-MIM-1 and u-MIM-2, respectively), and four complex MIM (c-MIM-1, -2, -3 and -4) characterized by the presence of ULD of IL-1ß and TNF-α amongst other factors. Thus, we first investigated the anti-inflammatory effects of u-MIM-1 and u-MIM-2 in a model of inflamed colon carcinoma cells. In addition, the anti-inflammatory potential of c-MIM-1, -2, -3 and -4, was assessed in in vitro models of intestinal and neuronal inflammation. Results: The results revealed that u-MIM-1 and u-MIM-2 both induced a slight decrease in the levels of IL-1ß and TNF-α transcripts. Regarding the c-MIMs' effects, c-MIM-1 displayed the capability to restore the altered transepithelial electrical resistance in inflamed-HCoEpiC cells. Moreover, c-MIM-1 also slightly increased the expression of the junction-related protein claudin-1, both at the mRNA and protein levels. In addition, our in vitro investigations on c-MIM-2 and c-MIM-3 revealed their immune-modulatory effects in LPS-inflamed human monocytes, macrophages, and granulocytes, on the secretion of cytokines such as TNF-α, PGE2, and IL-6. Finally, c-MIM-4 restored the cell viability of LPS/IFN-γ-inflamed rat cortical neurons, while reducing the secretion of TNF-α in rat glial cells. Discussion: Our results shed the light on the potential role of these MIM formulations in managing several chronic inflammation-related conditions.

8.
Int J Mol Sci ; 23(11)2022 May 27.
Article in English | MEDLINE | ID: mdl-35682738

ABSTRACT

In this study, the immunomodulatory effects of a sequential micro-immunotherapy medicine, referred as MIM-seq, were appraised in human primary M1 and M2 macrophages, in which the secretion of pro-inflammatory cytokines, such as interleukin (IL)-1ß, IL-6, IL-12, IL-23, and tumor necrosis factor (TNF)-alpha, was inhibited. In addition, the potential anti-proliferative effects of MIM-seq on tumor cells was assessed in three models of colorectal cancer (CRC): an in vitro two-dimensions (2D) model of HCT-116 cells, an in vitro tri-dimensional (3D) model of spheroids, and an in vivo model of subcutaneous xenografted mice. In these models, MIM-seq displayed anti-proliferative effects when compared with the vehicle. In vivo, the tumor growth was slightly reduced in MIM-seq-treated animals. Moreover, MIM-seq could slightly reduce the growth of our spheroid models, especially under serum-deprivation. When MIM-seq was combined with two well-known anti-cancerogenic agents, either resveratrol or etoposide, MIM-seq could even further reduce the spheroid's volume, pointing up the need to further assess whether MIM-seq could be beneficial for CRC patients as an adjuvant therapy. Altogether, these data suggest that MIM-seq could have anti-tumor properties against CRC and an immunomodulatory effect towards the mediators of inflammation, whose systemic dysregulation is considered to be a poor prognosis for patients.


Subject(s)
Carcinoma , Colonic Neoplasms , Animals , Colonic Neoplasms/drug therapy , Disease Models, Animal , Heterografts , Humans , Immunologic Factors/pharmacology , Immunotherapy , Macrophages , Mice , Tumor Necrosis Factor-alpha/pharmacology
9.
Int J Mol Sci ; 23(4)2022 Feb 19.
Article in English | MEDLINE | ID: mdl-35216428

ABSTRACT

As a cytokine, gamma-interferon (IFN-γ) is considered a key player in the fine-tuned orchestration of immune responses. The extreme cellular sensitivity to cytokines is attested by the fact that very few of these bioactive molecules per cell are enough to trigger cellular functions. These findings can, at least partially, explain how/why homeopathically-prepared cytokines, and especially micro-immunotherapy (MI) medicines, are able to drive cellular responses. We focused our fundamental research on a unitary MI preparation of IFN-γ, specifically employed at 4 CH, manufactured and impregnated onto sucrose-lactose pillules as all other MI medicines. We assessed the IFN-γ concentration in the medium after dilution of the IFN-γ (4 CH)-bearing pillules and we evaluated in vitro drug responses in a wide range of immune cells, and in endothelial cells. Our results showed that IFN-γ (4 CH) stimulated the proliferation, the activation and the phagocytic capabilities of primary immune cells, as well as modulated their cytokine-secretion and immunity-related markers' expression in a trend that is quite comparable with the well-recognized biological effects induced by IFN-γ. Altogether, these data provide novel and additional evidences on MI medicines, and specifically when active substances are prepared at 4 CH, thus suggesting the need for more investigations.


Subject(s)
Immunomodulation/immunology , Interferon-gamma/immunology , Cell Line, Tumor , Cells, Cultured , Human Umbilical Vein Endothelial Cells/immunology , Humans , Immunity/immunology , Immunologic Factors/immunology , Immunotherapy/methods , Leukocytes, Mononuclear/immunology , THP-1 Cells
10.
Int J Mol Sci ; 22(13)2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34201546

ABSTRACT

Tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) are two cytokines involved in the perpetuation of the chronic inflammation state characterizing rheumatoid arthritis (RA). Significant advances in the treatment of this pathology have been made over the past ten years, partially through the development of anti-TNF and anti-IL-1 therapies. However, major side effects still persist and new alternative therapies should be considered. The formulation of the micro-immunotherapy medicine (MIM) 2LARTH® uses ultra-low doses (ULD) of TNF-α, IL-1ß, and IL-2, in association with other immune factors, to gently restore the body's homeostasis. The first part of this review aims at delineating the pivotal roles played by IL-1ß and TNF-α in RA physiopathology, leading to the development of anti-TNF and anti-IL-1 therapeutic agents. In a second part, an emphasis will be made on explaining the rationale of using multiple therapeutic targets, including both IL-1ß and TNF-α in 2LARTH® medicine. Particular attention will be paid to the ULD of those two main pro-inflammatory factors in order to counteract their overexpression through the lens of their molecular implication in RA pathogenesis.


Subject(s)
Arthritis, Rheumatoid/drug therapy , Cytokines/administration & dosage , Immunotherapy/methods , Interleukin-1beta/administration & dosage , Tumor Necrosis Factor-alpha/administration & dosage , Administration, Oral , Animals , Arthritis, Rheumatoid/physiopathology , Dose-Response Relationship, Drug , Humans , Interleukin-1beta/adverse effects , Interleukin-1beta/antagonists & inhibitors , Interleukin-1beta/physiology , Interleukin-2/administration & dosage , Interleukin-2/adverse effects , Molecular Targeted Therapy/methods , Precision Medicine , Tumor Necrosis Factor-alpha/adverse effects , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/physiology
11.
Int J Mol Sci ; 23(1)2021 Dec 22.
Article in English | MEDLINE | ID: mdl-35008536

ABSTRACT

This study aimed at evaluating the effects of the micro-immunotherapy medicine (MIM) 2LEID, both in vitro and in vivo, on several components of the innate and adaptive immune system. MIM increased the phagocytic activity of macrophages, and it augmented the expression of the activation markers CD69 and HLA-DR in NK cells and monocytes/macrophages, respectively. The effect of MIM was evaluated in a model of respiratory infection induced by influenza A virus administration to immunocompetent mice in which it was able to improve neutrophil recruitment within the lungs (p = 0.1051) and slightly increased the circulating levels of IgM (p = 0.1655). Furthermore, MIM stimulated the proliferation of CD3-primed T lymphocytes and decreased the secretion of the immunosuppressive cytokine IL-10 in CD14+-derived macrophages. Human umbilical vein endothelial cells were finally used to explore the effect of MIM on endothelial cells, in which it slightly increased the expression of immune-related markers such as HLA-I, CD137L, GITRL, PD-L1 and ICAM-1. In conclusion, the present study suggests that MIM might be a promising nonspecific (without antigen specificity) immunostimulant drug in preventing and early treating respiratory infections, but not only exclusively, as it would gently support several facets of the immune system and host defenses.


Subject(s)
Adaptive Immunity/drug effects , Adjuvants, Immunologic/pharmacology , Immunity, Innate/drug effects , Adaptive Immunity/immunology , Animals , Biomarkers/metabolism , Cell Proliferation/physiology , Cells, Cultured , Cytokines/immunology , Endothelial Cells/drug effects , Endothelial Cells/immunology , Female , Humans , Immunity, Innate/immunology , Immunotherapy/methods , Interleukin-10/immunology , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/immunology , Lung/drug effects , Lung/immunology , Macrophages/drug effects , Macrophages/immunology , Mice , Mice, Inbred BALB C , Monocytes/drug effects , Monocytes/immunology , Neutrophils/drug effects , Neutrophils/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology
12.
Dose Response ; 18(1): 1559325820914092, 2020.
Article in English | MEDLINE | ID: mdl-32269504

ABSTRACT

In this study, we evaluated the efficacy of a micro-immunotherapy medicine (MIM), 2LALERG, in a preclinical model of allergic respiratory disease sensitized with birch pollen extract (BPE). BALB/c mice were immunized with BPE, or saline solution, and were then challenged. Micro-immunotherapy medicine pillules were diluted in water, and 3 doses (0.75; 1.5; 3 mg/mouse) were tested and compared to vehicle control (3 mg/mouse). Treatments and vehicle were orally administered by gavage for 10 days. Micro-immunotherapy medicine (0.75 mg/mouse) reduced the number of total cells as well as the levels of interleukin (IL)-13 in bronchoalveolar lavage fluid (BALF) compared to vehicle control. Eosinophils in BALF tended to be lower compared to vehicle group, and the difference is close to significance. Histological analysis in the lungs confirms a moderate effect of MIM (0.75 mg/mice) on inflammatory infiltration and mucus production. Serum levels of IL-5 in MIM (0.75 mg/mouse)-treated mice were lower compared to vehicle; IL-4 levels tended to be lower too. Total immunoglobulin E (IgE) decreased in serum of MIM (1.5 and 0.75 mg/mouse) groups compared to vehicle control. Micro-immunotherapy medicine exerted the highest effect at the lowest dose tested. Micro-immunotherapy medicine resolved the local and systemic inflammation, even if partially, in a model of pollen-induced, IgE-mediated inflammation.

13.
Int J Rheumatol ; 2020: 1594573, 2020.
Article in English | MEDLINE | ID: mdl-32180808

ABSTRACT

BACKGROUND: Rheumatoid arthritis (RA) is a chronic inflammatory joint disease, which can cause cartilage and bone damages as well as pain and disability. In order to prevent disease progression, reduce pain, and major symptoms of RA, one good strategy consists in targeting proinflammatory cytokines that have the key role in the vicious circle of synovial inflammation and pain. The micro-immunotherapy medicine (MIM) 2LARTH® targets cytokines involved in inflammation. AIM: The aim of the study is to evaluate the effect of the MIM compared to vehicle in an in vivo model of RA, induced in mice after immunization with articular bovine type II collagen. METHODS: Vehicle and MIM were dissolved in pure water (1 capsule in 100 ml) and 100 µl was given by gavage daily for 14 days. To evaluate the severity of arthritis, wrist and ankle thickness was determined, paw edema was measured, and a clinical score from 0 to 4 was established. Furthermore, histological analysis was performed. To evaluate systemic inflammation, circulating levels of IL-1ß and TNF-α were measured by ELISA. RESULTS: Ankle thickness was found to be significantly reduced in MIM-treated mice compared to vehicle-treated mice (P < 0.05) and compared to untreated me (P < 0.05) and compared to untreated me (P < 0.05) and compared to untreated me (ß and TNF-α were measured by ELISA. P < 0.05) and compared to untreated me (. CONCLUSION: The results indicate that the tested medicine reduces inflammation, histological, and clinical signs of RA in a CIA model.

14.
Dose Response ; 18(4): 1559325820961723, 2020.
Article in English | MEDLINE | ID: mdl-33633511

ABSTRACT

Tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) are pro-inflammatory cytokines involved in acute and chronic inflammatory diseases. Indeed, immunotherapy blocking these 2 cytokines has been developed. Micro-immunotherapy (MI) also uses ultra-low doses (ULD) of pro-inflammatory cytokines, impregnated on lactose-sucrose pillules, to counteract their overexpression. The study has been conducted with 2 objectives: examine the anti-inflammatory effect in vitro and the capacity of 2 unitary medicines, TNF-α (27 CH) and IL-1ß (27 CH), to reduce the secretion of TNF-α in human primary monocytes and THP-1 cells differentiated with phorbol-12-myristate-13-acetate, after lipopolysaccharide (LPS) exposure; then, investigate the presence of particles possibly containing starting materials using tunable resistive pulse sensing technique. The results show that the unitary medicines, tested at 3 pillules concentrations (5.5, 11 and 22 mM), have reduced the secretion of TNF-α in both models by about 10-20% vs. vehicle control, depending on concentration. In this exploratory study, particles (150-1000 nm) have been detected in MI ULD-impregnated pillules and a hypothesis for MI medicines mode of action has been proposed. Conscious that more evaluations are necessary, authors are cautious in the conclusions because the findings described in the study are still limited, and future investigations may lead to different hypothesis.

15.
J Inflamm Res ; 11: 397-405, 2018.
Article in English | MEDLINE | ID: mdl-30464572

ABSTRACT

BACKGROUND: Tumor necrosis factor-α (TNF-α) and IL-1ß are 2 pro-inflammatory cytokines known to be involved in rheumatic diseases. The therapeutic strategy used in micro-immunotherapy (MI) to reduce chronic inflammation and attenuate pain consists in mainly targeting these 2 cytokines. 2LARTH® is a sublingually administered medicine consisting of lactose-saccharose globules impregnated with ethanolic preparations of immune mediators and nucleic acids at ultra-low doses. PURPOSE: The aim of the study is to explore the effect of the MI medicine on TNF-α and IL-1ß secretion in human primary enriched monocytes exposed to lipopolysaccharide (LPS). MATERIALS AND METHODS: Placebo and active globules were diluted in culture medium to test 5 lactose-saccharose globules concentrations (from 1.75 to 22 mM). Freshly isolated enriched monocytes from 6 healthy donors were treated with or without LPS (10 ng/mL), LPS+ placebo, or LPS+ 2LARTH® for 24 hours. IL-1ß, TNF-α, and IL-6 release were evaluated by ELISA. RESULTS: The medicine has significantly decreased the level of IL-1ß secretion compared with placebo at these concentrations: 22 mM (P<0.0001), 11 mM (P=0.0086), 5.5 mM (P= 0.0254), and compared with untreated LPS control at these concentrations: 22 mM, 11 mM (P=0.0008), and 5.5 mM (P=0.002). The effect of active globules on the reduction of TNF-α release is significant compared with placebo at these concentrations: 22 mM (P=0.0018), 11 mM (P=0.0005), 5.5 mM (P=0.0136), and compared with untreated LPS control at these concentrations: 22 mM (P=0.0021), 11 mM (P=0.0017), 5.5 mM (P=0.0052) and 2.25 mM (P=0.0196). Besides, IL-6 secretion decreased compared with placebo at 22 mM (P=0.0177) and 11 mM (P=0.0031). CONCLUSION: The results indicate that the tested product exerts significant anti-inflammatory effects on human LPS-stimulated monocytes.

16.
Nat Methods ; 14(3): 228-232, 2017 02 28.
Article in English | MEDLINE | ID: mdl-28245209

ABSTRACT

We argue that the field of extracellular vesicle (EV) biology needs more transparent reporting to facilitate interpretation and replication of experiments. To achieve this, we describe EV-TRACK, a crowdsourcing knowledgebase (http://evtrack.org) that centralizes EV biology and methodology with the goal of stimulating authors, reviewers, editors and funders to put experimental guidelines into practice.


Subject(s)
Biomedical Research , Databases, Bibliographic , Extracellular Vesicles/physiology , Internationality
17.
Int J Mol Sci ; 17(12)2016 Nov 28.
Article in English | MEDLINE | ID: mdl-27916805

ABSTRACT

Communication between mother and offspring in mammals starts at implantation via the maternal-placental-fetal axis, and continues postpartum via milk targeted to the intestinal mucosa. MicroRNAs (miRNAs), short, noncoding single-stranded RNAs, of about 22 nucleotides in length, are actively involved in many developmental and physiological processes. Here we highlight the role of miRNA in the dynamic signaling that guides infant development, starting from implantation of conceptus and persisting through the prenatal and postnatal periods. miRNAs in body fluids, particularly in amniotic fluid, umbilical cord blood, and breast milk may offer new opportunities to investigate physiological and/or pathological molecular mechanisms that portend to open novel research avenues for the identification of noninvasive biomarkers.


Subject(s)
MicroRNAs/metabolism , Amniotic Fluid/metabolism , Animals , Biomarkers/metabolism , Embryo Implantation/physiology , Female , Humans , Milk, Human/metabolism , Pregnancy
18.
PLoS One ; 10(10): e0140488, 2015.
Article in English | MEDLINE | ID: mdl-26474056

ABSTRACT

BACKGROUND AND AIMS: Human breast milk is an extremely dynamic fluid containing many biologically-active components which change throughout the feeding period and throughout the day. We designed a miRNA assay on minimized amounts of raw milk obtained from mothers of preterm infants. We investigated changes in miRNA expression within month 2 of lactation and then over the course of 24 hours. MATERIALS AND METHODS: Analyses were performed on pooled breast milk, made by combining samples collected at different clock times from the same mother donor, along with time series collected over 24 hours from four unsynchronized mothers. Whole milk, lipids or skim milk fractions were processed and analyzed by qPCR. We measured hsa-miR-16-5p, hsa-miR-21-5p, hsa-miR-146-5p, and hsa-let-7a, d and g (all -5p). Stability of miRNA endogenous controls was evaluated using RefFinder, a web tool integrating geNorm, Normfinder, BestKeeper and the comparative ΔΔCt method. RESULTS: MiR-21 and miR-16 were stably expressed in whole milk collected within month 2 of lactation from four mothers. Analysis of lipids and skim milk revealed that miR-146b and let-7d were better references in both fractions. Time series (5H-23H) allowed the identification of a set of three endogenous reference genes (hsa-let-7d, hsa-let-7g and miR-146b) to normalize raw quantification cycle (Cq) data. We identified a daily oscillation of miR-16-5p. PERSPECTIVES: Our assay allows exploring miRNA levels of breast milk from mother with preterm baby collected in time series over 48-72 hours.


Subject(s)
MicroRNAs/analysis , Milk, Human/chemistry , Real-Time Polymerase Chain Reaction/methods , Circadian Rhythm , Female , Humans , Infant, Premature , Real-Time Polymerase Chain Reaction/standards
19.
Arterioscler Thromb Vasc Biol ; 35(3): 664-74, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25614281

ABSTRACT

OBJECTIVE: Gestational diabetes mellitus (GDM) produces fetal hyperglycemia with increased lifelong risks for the exposed offspring of cardiovascular and other diseases. Epigenetic mechanisms induce long-term gene expression changes in response to in utero environmental perturbations. Moreover, microRNAs (miRs) control the function of endothelial cells (ECs) under physiological and pathological conditions and can target the epigenetic machinery. We investigated the functional and expressional effect of GDM on human fetal ECs of the umbilical cord vein (HUVECs). We focused on miR-101 and 1 of its targets, enhancer of zester homolog-2 (EZH2), which trimethylates the lysine 27 of histone 3, thus repressing gene transcription. EZH2 exists as isoforms α and ß. APPROACH AND RESULTS: HUVECs were prepared from GDM or healthy pregnancies and tested in apoptosis, migration, and Matrigel assays. GDM-HUVECs demonstrated decreased functional capacities, increased miR-101 expression, and reduced EZH2- ß and trimethylation of histone H3 on lysine 27 levels. MiR-101 inhibition increased EZH2 expression and improved GDM-HUVEC function. Healthy HUVECs were exposed to high or normal d-glucose concentration for 48 hours and then tested for miR-101 and EZH2 expression. Similar to GDM, high glucose increased miR-101 expression. Chromatin immunoprecipitation using an antibody for EZH2 followed by polymerase chain reaction analyses for miR-101 gene promoter regions showed that both GDM and high glucose concentration reduced EZH2 binding to the miR-101 locus in HUVECs. Moreover, EZH2-ß overexpression inhibited miR-101 promoter activity in HUVECs. CONCLUSIONS: GDM impairs HUVEC function via miR-101 upregulation. EZH2 is both a transcriptional inhibitor and a target gene of miR-101 in HUVECs, and it contributes to some of the miR-101-induced defects of GDM-HUVECs.


Subject(s)
Diabetes, Gestational/enzymology , Human Umbilical Vein Endothelial Cells/enzymology , MicroRNAs/metabolism , Polycomb Repressive Complex 2/metabolism , Apoptosis , Binding Sites , Case-Control Studies , Cell Movement , Cell Survival , Cells, Cultured , Diabetes, Gestational/genetics , Diabetes, Gestational/pathology , Diabetes, Gestational/physiopathology , Enhancer of Zeste Homolog 2 Protein , Female , Gestational Age , Glucose/metabolism , Histones/metabolism , Human Umbilical Vein Endothelial Cells/pathology , Humans , Methylation , Neovascularization, Physiologic , Phenotype , Polycomb Repressive Complex 2/genetics , Pregnancy , Promoter Regions, Genetic , RNA Interference , Signal Transduction , Time Factors , Transcription, Genetic , Transfection , Up-Regulation
20.
Mol Ther ; 23(1): 32-42, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25189741

ABSTRACT

Epigenetic mechanisms may regulate the expression of pro-angiogenic genes, thus affecting reparative angiogenesis in ischemic limbs. The enhancer of zest homolog-2 (EZH2) induces thtrimethylation of lysine 27 on histone H3 (H3K27me3), which represses gene transcription. We explored (i) if EZH2 expression is regulated by hypoxia and ischemia; (ii) the impact of EZH2 on the expression of two pro-angiogenic genes: eNOS and BDNF; (iii) the functional effect of EZH2 inhibition on cultured endothelial cells (ECs); (iv) the therapeutic potential of EZH2 inhibition in a mouse model of limb ischemia (LI). EZH2 expression was increased in cultured ECs exposed to hypoxia (control: normoxia) and in ECs extracted from mouse ischemic limb muscles (control: absence of ischemia). EZH2 increased the H3K27me3 abundance onto regulatory regions of eNOS and BDNF promoters. In vitro RNA silencing or pharmacological inhibition by 3-deazaneplanocin (DZNep) of EZH2 increased eNOS and BDNF mRNA and protein levels and enhanced functional capacities (migration, angiogenesis) of ECs under either normoxia or hypoxia. In mice with experimentally induced LI, DZNep increased angiogenesis in ischaemic muscles, the circulating levels of pro-angiogenic hematopoietic cells and blood flow recovery. Targeting EZH2 for inhibition may open new therapeutic avenues for patients with limb ischemia.


Subject(s)
Epigenesis, Genetic , Hypoxia/genetics , Ischemia/genetics , Neovascularization, Physiologic/drug effects , Polycomb Repressive Complex 2/genetics , Adenosine/analogs & derivatives , Adenosine/pharmacology , Animals , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Cell Hypoxia , Enhancer of Zeste Homolog 2 Protein , Femoral Artery/surgery , Hindlimb/blood supply , Hindlimb/drug effects , Hindlimb/surgery , Histones/genetics , Histones/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Hypoxia/drug therapy , Hypoxia/metabolism , Hypoxia/pathology , Ischemia/drug therapy , Ischemia/metabolism , Male , Mice , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type III/metabolism , Polycomb Repressive Complex 2/antagonists & inhibitors , Polycomb Repressive Complex 2/metabolism , Primary Cell Culture , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...