Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Theory Comput ; 7(9): 2963-80, 2011 Sep 13.
Article in English | MEDLINE | ID: mdl-26605485

ABSTRACT

Reverse kink-turn is a recurrent elbow-like RNA building block occurring in the ribosome and in the group I intron. Its sequence signature almost matches that of the conventional kink-turn. However, the reverse and conventional kink-turns have opposite directions of bending. The reverse kink-turn lacks basically any tertiary interaction between its stems. We report unrestrained, explicit solvent molecular dynamics simulations of ribosomal and intron reverse kink-turns (54 simulations with 7.4 µs of data in total) with different variants (ff94, ff99, ff99bsc0, ff99χOL, and ff99bsc0χOL) of the Cornell et al. force field. We test several ion conditions and two water models. The simulations characterize the directional intrinsic flexibility of reverse kink-turns pertinent to their folded functional geometries. The reverse kink-turns are the most flexible RNA motifs studied so far by explicit solvent simulations which are capable at the present simulation time scale to spontaneously and reversibly sample a wide range of geometries from tightly kinked ones through flexible intermediates up to extended, unkinked structures. A possible biochemical role of the flexibility is discussed. Among the tested force fields, the latest χOL variant is essential to obtaining stable trajectories while all force field versions lacking the χ correction are prone to a swift degradation toward senseless ladder-like structures of stems, characterized by high-anti glycosidic torsions. The type of explicit water model affects the simulations considerably more than concentration and the type of ions.

2.
J Chem Theory Comput ; 6(11): 3569-79, 2010 Nov 09.
Article in English | MEDLINE | ID: mdl-26617103

ABSTRACT

Conventional molecular dynamics simulations on 50 ns to 1 µs time scales were used to study the effects of explicit solvent models on the conformational behavior and solvation of two oligopeptide solutes: α-helical EK-peptide (14 amino acids) and a ß-hairpin chignolin (10 amino acids). The widely used AMBER force fields (ff99, ff99SB, and ff03) were combined with four of the most commonly used explicit solvent models (TIP3P, TIP4P, TIP5P, and SPC/E). Significant differences in the specific solvation of chignolin among the studied water models were identified. Chignolin was highly solvated in TIP5P, whereas reduced specific solvation was found in the TIP4P, SPC/E, and TIP3P models for kinetic, thermodynamic, and both kinetic and thermodynamic reasons, respectively. The differences in specific solvation did not influence the dynamics of structured parts of the folded peptide. However, substantial differences between TIP5P and the other models were observed in the dynamics of unfolded chignolin, stability of salt bridges, and specific solvation of the backbone carbonyls of EK-peptide. Thus, we conclude that the choice of water model may affect the dynamics of flexible parts of proteins that are solvent-exposed. On the other hand, all water models should perform similarly for well-structured folded protein regions. The merits of the TIP3P model include its high and overestimated mobility, which accelerates simulation processes and thus effectively increases sampling.

SELECTION OF CITATIONS
SEARCH DETAIL
...