Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ASAIO J ; 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38537074

ABSTRACT

The Pennsylvania State University (PSU) Child Pump, a centrifugal continuous-flow ventricular assist device (cf-VAD), is being developed as a suitable long-term implantable device for pediatric heart failure patients between 10 and 35 kg, body surface area (BSA) of 0.5-1.2 m2, 1-11 years of age, and requiring a mean cardiac output of 1.0-3.5 L/min. In-vitro hydraulic and hemodynamic performances were evaluated on a custom mock circulatory loop with ovine blood. Normalized index of hemolysis (NIH) was evaluated under four conditions: 1) 8,300 rpm, 3.5 L/min, ΔP = 60 mm Hg, 2) 8,150 rpm, 5.1 L/min, ΔP = 20 mm Hg, 3) 8,400 rpm, 3.2 L/min, ΔP = 70 mm Hg, and 4) 9,850 rpm, 5.0 L/min, ΔP = 80 mm Hg, resulting in normalized index of hemolysis = 0.027 ± 0.013, 0.015 ± 0.006, 0.016 ± 0.008, and 0.026 ± 0.011 mg/dl, respectively. A mock fit study was conducted using a three-dimensional printed model of a 19 kg patient's thoracic cavity to compare the size of the PSU Child Pump to the HeartMate3 and the HVAD. Results indicate the PSU Child Pump will be a safer, appropriately sized device capable of providing the given patient cohort proper support while minimizing the risks of blood trauma as they wait for a transplant.

2.
ASAIO J ; 68(6): 791-799, 2022 06 01.
Article in English | MEDLINE | ID: mdl-34860709

ABSTRACT

Current generation continuous flow assist devices to operate at a fixed speed, which limits preload response and exercise capacity in left ventricular assist device (LVAD) patients. A feedback control system was developed to automatically adjust pump speed based on direct measurements of ventricular loading using a custom cannula tip with an integrated pressure sensor and volume-sensing conductance electrodes. The input to the control system is the integral of the left ventricular (LV) pressure versus conductance loop (PGA) over each cardiac cycle. The feedback control system adjusts pump speed based on the difference between the measured PGA and the desired PGA. The control system and cannula tip were tested in acute ovine studies (n = 5) using the HeartMate II LVAD. The preload response of the control system was evaluated by partially occluding and releasing the inferior vena cava using a vessel loop snare. The cannula tip was integrated onto a custom centrifugal flow LVAD and tested in a 14-day bovine study. The control system adjusted pump support to maintain constant ventricular loading: pump speed increased (decreased) following an increase (decrease) in preload. This study demonstrated in vivo the Starling-like response of an automatic pump control system based on direct measurements of LV loading.


Subject(s)
Heart-Assist Devices , Animals , Cattle , Humans , Cannula , Heart Ventricles , Sheep , Ventricular Pressure
3.
ASAIO J ; 67(11): 1240-1249, 2021 11 01.
Article in English | MEDLINE | ID: mdl-33883510

ABSTRACT

We have miniaturized and optimized our implantable rotary blood pump developed to provide long-term mechanical right heart support for patients who have failing Fontan circulation. The objective of this study was to evaluate the miniaturized Fontan circulation assist device (mini-FCAD) during 30-day sheep studies (n = 5). A complete right heart bypass was performed and all return flow was supported by the pump. Postoperatively, unfractionated heparin was given to maintain thromboelastography R times of 2× normal. The first two studies were terminated on day 0 and day 4 due to complications. In the final three studies, the animals remained healthy and were electively terminated at 30 ± 2 days. Pump flow was between 5 and 7 lpm, left atrial pressure remained normal, and inlet pressures were between 3 and 18 mm Hg with no incidents of suction. There was no evidence of hemolysis, end organ or pulmonary dysfunction, thromboembolic events, nor thermal damage to the surrounding tissue. Explanted devices from two studies were free of thrombi and in the third study there were unattached thrombi on the SVC inlet of the rotor. The mini-FCAD was successfully tested in vivo as a right heart replacement device demonstrating adequate circulatory support and normal physiologic pulmonary and venous pressures.


Subject(s)
Fontan Procedure , Heart Bypass, Right , Heart-Assist Devices , Animals , Fontan Procedure/adverse effects , Heart-Assist Devices/adverse effects , Hemodynamics , Heparin , Humans , Sheep
SELECTION OF CITATIONS
SEARCH DETAIL
...