Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Plants ; 9(1): 36-44, 2023 01.
Article in English | MEDLINE | ID: mdl-36564632

ABSTRACT

Nitroxyl (HNO) is the one-electron reduced and protonated congener of nitric oxide (•NO), owning a distinct chemical profile. Based on real-time detection, we demonstrate that HNO is endogenously formed in Arabidopsis. Senescence and hypoxia induce shifts in the redox balance, triggering HNO decay or formation mediated by non-enzymatic •NO/HNO interconversion with cellular reductants. The stimuli-dependent HNO generation supports or competes with •NO signalling, depending on the local redox environment.


Subject(s)
Arabidopsis , Nitrogen Oxides/pharmacology , Nitric Oxide , Oxidation-Reduction
2.
Plant Biol (Stuttg) ; 13(5): 747-56, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21815979

ABSTRACT

In the present work, we tested known nitric oxide (NO) modulators generating the NO+ (sodium nitroprusside, SNP) and NO˙ forms (S-nitroso-N-acetyl-D-penicillamine, SNAP and nitrosoglutathione, GSNO). This allowed us to compare downstream NO-related physiological effects on proteins found in leaves of pelargonium (Pelargonium peltatum L.). Protein modification via NO donors generally affects plant metabolism in a distinct manner, manifested by a lower thiobarbituric acid reactive substance (TBARS) content and lipoxygenase (LOX) activity in response to SNAP and GSNO. This is in contrast to the response observed for SNP treatment. Most changes in enzyme activity (GR, glutathione reductase; GST, glutathione-S-transferase; GPX, glutathione peroxidase) are most spectacular and repeatable during the first 8 h of incubation, which is explained by the half-life of the applied donors. In particular, a close dependence was found between the time-course of NO emission from the applied donors and the temporary inhibition of antioxidant enzymes, such as catalase (CAT) and ascorbate peroxidase (APX). The observed changes were accompanied by time-dependent alterations in protein accumulation as analysed by two-dimensional gel electrophoresis (2-DE) in pelargonium leaves treated with NO donors (SNP, SNAP and GSNO). Using proteomics, different proteins were found to be down- and up-regulated. However, no new protein spots characteristic of all three donors were found. These results indicate that the form of NO emitted from the donor structure plays a key role in switching on appropriate metabolic modifications. It has been noted that several NO-affected metabolomic changes induced by the used donors were not comparable, which confirms the need to maintain caution when interpreting results obtained using the pharmacological approach with different NO modulator compounds.


Subject(s)
Nitric Oxide Donors/pharmacology , Nitric Oxide/metabolism , Pelargonium/metabolism , Antioxidants/metabolism , Ascorbate Peroxidases/metabolism , Catalase/metabolism , Enzyme Activation/physiology , Glutathione Peroxidase/metabolism , Glutathione Reductase/metabolism , Lipoxygenase/metabolism , Plant Growth Regulators , Plant Leaves/drug effects , Plant Leaves/enzymology , Plant Leaves/metabolism , Plant Proteins/metabolism , Thiobarbituric Acid Reactive Substances/metabolism
3.
Plant Biol (Stuttg) ; 11(5): 650-63, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19689772

ABSTRACT

The subject of this study was the participation of nitric oxide (NO) in plant responses to wounding, promoted by nicking of pelargonium (Pelargonium peltatum L.) leaves. Bio-imaging with the fluorochrome 4,5-diaminofluorescein diacetate (DAF-2DA) and electrochemical in situ measurement of NO showed early (within minutes) and transient (2 h) NO generation after wounding restricted to the site of injury. In order to clarify the functional role of NO in relation to modulation of the redox balance during wounding, a pharmacological approach was used. A positive correlation was found between NO generation and regulation of the redox state. NO caused a slight restriction of post-wounded O(2) (-) production, in contrast to the periodic and marked increase in H(2)O(2) level. The observed changes were accompanied by time-dependent inhibition of catalase (CAT) and ascorbate peroxidase (APX) activity. The effect was specific to NO, since the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5 tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) reversed the inhibition of CAT and APX, as well as temporarily enhancing H(2)O(2) synthesis. Finally, cooperation of NO/H(2)O(2) restricted the depletion of the low-molecular weight antioxidant pool (i.e. ascorbic acid and thiols) was positively correlated with sealing and reconstruction changes in injured pelargonium leaves (i.e. lignin formation and callose deposition). The above results clearly suggest that NO may promote restoration of wounded tissue through stabilisation of the cell redox state and stimulation of the wound scarring processes.


Subject(s)
Nitric Oxide/metabolism , Pelargonium/metabolism , Plant Leaves/metabolism , Antioxidants/metabolism , Fluorescein , Microelectrodes , Microscopy, Confocal , Oxidation-Reduction , Plant Diseases
4.
Planta ; 224(6): 1363-72, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16773376

ABSTRACT

Huge advances achieved recently in elucidating the role of NO in plants have been made possible by the application of NO donors. However, the application of NO to plants in various forms and doses should be subjected to detailed verification criteria. Not all metabolic responses induced by NO donors are reliable and reproducible in other experimental designs. The aim of the presented studies was to investigate the half-life of the most frequently applied donors (SNP, SNAP and GSNO), the rate of NO release under the influence of light and reducing agents. At a comparable donor concentration (500 microM) and under light conditions the highest rate of NO generation was found for SNAP, followed by GSNO and SNP. The measured half-life of the donor in the solution was 3 h for SNAP, 7 h for GSNO and 12 h for SNP. A temporary lack of light inhibited NO release from SNP, both in the solution and SNP-treated leaf tissue, which was measured by the electrochemical method. Also a NO, selective fluorescence indicator DAF-2DA in leaves supplied with different donors showed green fluorescence spots in the epidermal cells mainly in the light. SNP as a NO donor was the most photosensitive. The activity of PAL, which plays an important role in plant defence, was also activated by SNP in the light, not in the dark. S-nitrosothiols (SNAP and GSNO) also underwent photodegradation, although to a lesser degree than SNP. Additionally, NO generation capacity from S-nitrosothiols was shown in the presence of reducing agents, i.e. ascorbic acid and GSH, and the absence of light. The authors of this paper would like to polemicize with the commonly cited statement that "donors are compounds that spontaneously break down to release NO" and wish to point out the fact that the process of donor decomposition depends on the numerous external factors. It may be additionally stimulated or inhibited by live plant tissue, thus it is necessary to take into consideration these aspects and monitor the amount of NO released by the donor.


Subject(s)
Nitric Oxide Donors/pharmacology , Nitric Oxide/metabolism , Phenylalanine Ammonia-Lyase/metabolism , Plants/drug effects , Light , Microscopy, Confocal , Plant Leaves/drug effects , Plant Leaves/enzymology , Plant Leaves/metabolism , Plants/enzymology , Plants/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...