Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 37(23): 6985-6994, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34080875

ABSTRACT

Surface instabilities are a versatile method for generating three-dimensional (3D) surface microstructure. When an elastomeric film weakly bonded to a substrate is swollen with solvent, buckle delamination and subsequent sliding of the film on the substrate lead to the formation of tall, self-contacting, and permanent folds. This paper explores the mechanics of fold development when such folding is induced by placing a drop on the surface of the film. We show that capillary effects can induce a strong coupling between folding and drop spreading: as folds develop, they wick the solvent toward the periphery of the drop, further propagating radially aligned folds. Accordingly, a solvent drop spreads far more on films that are weakly adhered to the substrate. As drop size reduces and folding becomes increasingly confined, debonding propagates along the perimeter of the wetted region, thus leading to corral-shaped fold patterns. On the other hand, as drop size increases and confinement effects weaken, isotropically oriented folds appear at a spacing that reduces as swelling increases. The spacing between the folds and the size of the corrals are both determined by the extent to which a single fold relieves compressive stress in its vicinity by sliding. We develop a model for folding which explicitly accounts for the fact that folds must initiate with near-zero volume under the buckle. The model shows that folds can appear even at very low swelling if there are large pre-existing debonded regions at the film-substrate interface.

2.
Cell Mol Neurobiol ; 22(1): 1-12, 2002 Feb.
Article in English | MEDLINE | ID: mdl-12064513

ABSTRACT

Reserpine inhibited batrachotoxin-elicited sodium influx in guinea pig brain synaptoneurosomes with an IC50 of about 1 microM. In the presence of brevetoxin the IC50 increased to about 80 microM. Reserpine inhibited binding of batrachotoxinin-A [3H]benzoate ([3H]BTX-B) binding in a complex manner causing a partial inhibition from 0.001 to 0.08 microM, then a rebound stimulation from 0.1 to 0.8 microM, followed by complete inhibition by 80 microM. The stimulation was prevented by the presence of brevetoxin; reserpine then smoothly inhibited binding with an IC50 of about 1 microM. Reserpine at 1 microM slightly reduced the off-rate of [3H]BTX-B binding measured in the presence of veratridine, while at a concentration of 50 microM it enhanced the off-rate, presumably by an allosteric mechanism. Reserpine at 0.3-10 microM elicited a partial inhibition of the binding of [3H]brevetoxin-3. The local anesthetic dibucaine had effects similar to reserpine: It partially inhibited binding of [3H]brevetoxin. The presence of brevetoxin reduced the potency of dibucaine as an inhibitor of batrachotoxin-elicited sodium influx from an IC50 of about 2 microM to an IC50 of about 50 microM. The results suggest that reserpine binds at both a local anesthetic site to cause allosteric inhibition of batrachotoxin-binding and action, but that it also binds to another site causing, like brevetoxin, an enhancement of batrachotoxin-binding and action. Local anesthetics also may bind to the brevetoxin site.


Subject(s)
Batrachotoxins/toxicity , Marine Toxins/toxicity , Neurotoxins/toxicity , Oxocins/toxicity , Reserpine/pharmacology , Sodium Channels/physiology , Synapses/physiology , Animals , Antitoxins/pharmacology , Batrachotoxins/pharmacokinetics , Binding Sites , Cerebral Cortex/physiology , Dibucaine/pharmacology , Guinea Pigs , Kinetics , Marine Toxins/pharmacokinetics , Oxocins/pharmacokinetics , Sodium Channels/drug effects , Synapses/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...