Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Death Dis ; 15(1): 89, 2024 01 26.
Article in English | MEDLINE | ID: mdl-38272889

ABSTRACT

As a highly heterogeneous tumor, pancreatic ductal adenocarcinoma (PDAC) exhibits non-uniform responses to therapies across subtypes. Overcoming therapeutic resistance stemming from this heterogeneity remains a significant challenge. Here, we report that Vitamin D-resistant PDAC cells hijacked Vitamin D signaling to promote tumor progression, whereas epigenetic priming with glyceryl triacetate (GTA) and 5-Aza-2'-deoxycytidine (5-Aza) overcame Vitamin D resistance and shifted the transcriptomic phenotype of PDAC toward a Vitamin D-susceptible state. Increasing overall H3K27 acetylation with GTA and reducing overall DNA methylation with 5-Aza not only elevated the Vitamin D receptor (VDR) expression but also reprogrammed the Vitamin D-responsive genes. Consequently, Vitamin D inhibited cell viability and migration in the epigenetically primed PDAC cells by activating genes involved in apoptosis as well as genes involved in negative regulation of cell proliferation and migration, while the opposite effect of Vitamin D was observed in unprimed cells. Studies in genetically engineered mouse PDAC cells further validated the effects of epigenetic priming for enhancing the anti-tumor activity of Vitamin D. Using gain- and loss-of-function experiments, we further demonstrated that VDR expression was necessary but not sufficient for activating the favorable transcriptomic phenotype in respond to Vitamin D treatment in PDAC, highlighting that both the VDR and Vitamin D-responsive genes were prerequisites for Vitamin D response. These data reveal a previously undefined mechanism in which epigenetic state orchestrates the expression of both VDR and Vitamin D-responsive genes and determines the therapeutic response to Vitamin D in PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Mice , Vitamin D/pharmacology , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Azacitidine/pharmacology , Epigenesis, Genetic , Gene Expression Profiling , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic
2.
Proc Natl Acad Sci U S A ; 120(10): e2211937120, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36848578

ABSTRACT

The vast majority of human pancreatic ductal adenocarcinomas (PDACs) harbor TP53 mutations, underscoring p53's critical role in PDAC suppression. PDAC can arise when pancreatic acinar cells undergo acinar-to-ductal metaplasia (ADM), giving rise to premalignant pancreatic intraepithelial neoplasias (PanINs), which finally progress to PDAC. The occurrence of TP53 mutations in late-stage PanINs has led to the idea that p53 acts to suppress malignant transformation of PanINs to PDAC. However, the cellular basis for p53 action during PDAC development has not been explored in detail. Here, we leverage a hyperactive p53 variant-p5353,54-which we previously showed is a more robust PDAC suppressor than wild-type p53, to elucidate how p53 acts at the cellular level to dampen PDAC development. Using both inflammation-induced and KRASG12D-driven PDAC models, we find that p5353,54 both limits ADM accumulation and suppresses PanIN cell proliferation and does so more effectively than wild-type p53. Moreover, p5353,54 suppresses KRAS signaling in PanINs and limits effects on the extracellular matrix (ECM) remodeling. While p5353,54 has highlighted these functions, we find that pancreata in wild-type p53 mice similarly show less ADM, as well as reduced PanIN cell proliferation, KRAS signaling, and ECM remodeling relative to Trp53-null mice. We find further that p53 enhances chromatin accessibility at sites controlled by acinar cell identity transcription factors. These findings reveal that p53 acts at multiple stages to suppress PDAC, both by limiting metaplastic transformation of acini and by dampening KRAS signaling in PanINs, thus providing key new understanding of p53 function in PDAC.


Subject(s)
Pancreatic Neoplasms , Precancerous Conditions , Humans , Animals , Mice , Proto-Oncogene Proteins p21(ras)/genetics , Tumor Suppressor Protein p53/genetics , Pancreatic Neoplasms/genetics , Pancreas , Metaplasia , Mice, Knockout
3.
Mol Carcinog ; 60(12): 799-812, 2021 12.
Article in English | MEDLINE | ID: mdl-34534377

ABSTRACT

Cellular senescence is a well-documented response to oncogene activation in many tissues. Multiple pathways are invoked to achieve senescence indicating its importance to counteract the transforming activities of oncogenic stimulation. We now report that the Rho-associated protein kinase (ROCK) signaling pathway is a critical regulator of oncogene-induced senescence in skin carcinogenesis. Transformation of mouse keratinocytes with oncogenic RAS upregulates ROCK activity and initiates a senescence response characterized by cell enlargement, growth inhibition, upregulation of senescence associated ß-galactosidase (SAßgal) expression, and release of multiple pro-inflammatory factors comprising the senescence-associated secretory phenotype (SASP). The addition of the ROCK inhibitor Y-27632 and others prevents these senescence responses and maintains proliferating confluent RAS transformed keratinocyte cultures indefinitely. Mechanistically, oncogenic RAS transformation is associated with upregulation of cell cycle inhibitors p15Ink4b , p16Ink4a , and p19Arf and downregulation of p-AKT, all of which are reversed by Y-27632. RNA-seq analysis of Y-27632 treated RAS-transformed keratinocytes indicated that the inhibitor reduced growth-inhibitory gene expression profiles and maintained expression of proliferative pathways. Y-27632 also reduced the expression of NF-κB effector genes and the expression of IκBζ downstream mediators. The senescence inhibition from Y-27632 was reversible, and upon its removal, senescence reoccurred in vitro with rapid upregulation of cell cycle inhibitors, SASP expression, and cell detachment. Y-27632 treated cultured RAS-keratinocytes formed tumors in the absence of the inhibitor when placed in skin orthografts suggesting that factors in the tumor microenvironment can overcome the drive to senescence imparted by overactive ROCK activity.


Subject(s)
Amides/administration & dosage , Cell Transformation, Neoplastic/drug effects , Keratinocytes/cytology , Pyridines/administration & dosage , Skin Neoplasms/pathology , ras Proteins/genetics , rho-Associated Kinases/metabolism , Amides/pharmacology , Animals , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cells, Cultured , Cellular Senescence/drug effects , Humans , Keratinocytes/drug effects , Keratinocytes/metabolism , Keratinocytes/transplantation , Mice , Pyridines/pharmacology , Sequence Analysis, RNA , Signal Transduction , Skin Neoplasms/drug therapy , Skin Neoplasms/genetics , Skin Neoplasms/metabolism
4.
Cancer Discov ; 11(3): 660-677, 2021 03.
Article in English | MEDLINE | ID: mdl-34009137

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease with a 5-year survival rate of approximately 9%. An improved understanding of PDAC initiation and progression is paramount for discovering strategies to better detect and combat this disease. Although transcriptomic analyses have uncovered distinct molecular subtypes of human PDAC, the factors that influence subtype development remain unclear. Here, we interrogate the impact of cell of origin and different Trp53 alleles on tumor evolution, using a panel of tractable genetically engineered mouse models. Oncogenic KRAS expression, coupled with Trp53 deletion or point mutation, drives PDAC from both acinar and ductal cells. Gene-expression analysis reveals further that ductal cell-derived and acinar cell-derived tumor signatures are enriched in basal-like and classical subtypes of human PDAC, respectively. These findings highlight cell of origin as one factor that influences PDAC molecular subtypes and provide insight into the fundamental impact that the very earliest events in carcinogenesis can have on cancer evolution. SIGNIFICANCE: Although human PDAC has been classified into different molecular subtypes, the etiology of these distinct subtypes remains unclear. Using mouse genetics, we reveal that cell of origin is an important determinant of PDAC molecular subtype. Deciphering the biology underlying pancreatic cancer subtypes may reveal meaningful distinctions that could improve clinical intervention.This article is highlighted in the In This Issue feature, p. 521.


Subject(s)
Cell Transformation, Neoplastic , Disease Susceptibility , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/etiology , Acinar Cells/metabolism , Acinar Cells/pathology , Alleles , Animals , Biomarkers, Tumor , Carcinoma, Pancreatic Ductal/diagnosis , Carcinoma, Pancreatic Ductal/etiology , Carcinoma, Pancreatic Ductal/metabolism , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Computational Biology/methods , Disease Models, Animal , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Immunohistochemistry , Kaplan-Meier Estimate , Mice , Mutation , Oncogenes , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/mortality , Prognosis , Proto-Oncogene Proteins p21(ras)/genetics , Transcriptome
5.
J Invest Dermatol ; 139(7): 1506-1515.e7, 2019 07.
Article in English | MEDLINE | ID: mdl-30684549

ABSTRACT

Among the molecular signals underlying cutaneous inflammation is the transcription complex NF-κB, its upstream modulators, and cytokines and chemokines that are the downstream proinflammatory effectors. Central to NF-κB activation is IκB kinase (IKK), which phosphorylates IκBα, releasing NF-κB to the nucleus. In a screening of a kinase inhibitor library, we identified two IKK inhibitors that were high-affinity substrates for p-glycoprotein (ABCB1), the multidrug resistance protein known to facilitate transdermal drug delivery. ACHP (2-amino-6-[2-(cyclopropylmethoxy)-6-hydroxyphenyl]-4-(4-piperidinyl)-3-pyridinecarbonitrile) and IKK 16 prevented both nuclear translocation of NF-κB and activation of a NF-κB reporter and reduced the induction of cytokine and chemokine transcripts in human or mouse keratinocytes by IL-1α, tumor necrosis factor-α, and phorbol myristate acetate. ACHP, but not IKK 16, was nontoxic to mouse or human keratinocytes at any dose tested. In mice, topical ACHP prevented the cutaneous inflammation induced by topical phorbol myristate acetate or imiquimod, reduced the inflammation from erythema doses of artificial sunlight, and lowered the tumor incidence of mice treated with 7,12-dimethyl benzanthracene when applied before phorbol myristate acetate. Topical ACHP also reduced the NF-κB and IL-17 inflammatory signature after multiple doses of imiquimod. Thus, ACHP and IKK 16 hit their NF-κB target in mouse and human keratinocytes, and ACHP is an effective topical nonsteroidal anti-inflammatory in mice.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Inflammation/drug therapy , Keratinocytes/metabolism , Nicotinic Acids/therapeutic use , Nitriles/therapeutic use , Piperidines/therapeutic use , Pyrrolidines/therapeutic use , Skin Neoplasms/drug therapy , Skin/pathology , 9,10-Dimethyl-1,2-benzanthracene , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Administration, Topical , Animals , Cytokines/metabolism , Disease Models, Animal , Drug Therapy, Combination , Humans , Imiquimod , Inflammation/chemically induced , Keratinocytes/pathology , Mice , NF-kappa B/antagonists & inhibitors , Skin Neoplasms/chemically induced
6.
Front Mol Biosci ; 4: 76, 2017.
Article in English | MEDLINE | ID: mdl-29250526

ABSTRACT

We previously reported that the pseudophosphatase MK-STYX (mitogen activated kinase phosphoserine/threonine/tyrosine binding protein) dramatically increases the number of what appeared to be primary neurites in rat pheochromocytoma (PC-12) cells; however, the question remained whether these MK-STYX-induced outgrowths were bona fide neurites, and formed synapses. Here, we report that microtubules and microfilaments, components of the cytoskeleton that are involved in the formation of neurites, are present in MK-STYX-induced outgrowths. In addition, in response to nerve growth factor (NGF), MK-STYX-expressing cells produced more growth cones than non-MK-STYX-expressing cells, further supporting a model in which MK-STYX has a role in actin signaling. Furthermore, immunoblot analysis demonstrates that MK-STYX modulates actin expression. Transmission electron microscopy confirmed that MK-STYX-induced neurites form synapses. To determine whether these MK-STYX-induced neurites have pre-synaptic or post-synaptic properties, we used classical markers for axons and dendrites, Tau-1 and MAP2 (microtubule associated protein 2), respectively. MK-STYX induced neurites were dopaminergic and expression of both Tau-1 and MAP2 suggests that they have both axonal and dendritic properties. Further studies in rat hippocampal primary neurons demonstrated that MK-STYX altered their morphology. A significant number of primary neurons in the presence of MK-STYX had more than the normal number of primary neurites. Our data illustrate the novel findings that MK-STYX induces outgrowths in PC-12 cells that fit the criteria for neurites, have a greater number of growth cones, form synapses, and have pre-synaptic and post-synaptic properties. It also highlights that the pseudophosphatase MK-STYX significantly alters the morphology of primary neurons.

7.
Cancer Cell ; 32(4): 460-473.e6, 2017 10 09.
Article in English | MEDLINE | ID: mdl-29017057

ABSTRACT

The p53 transcription factor is a critical barrier to pancreatic cancer progression. To unravel mechanisms of p53-mediated tumor suppression, which have remained elusive, we analyzed pancreatic cancer development in mice expressing p53 transcriptional activation domain (TAD) mutants. Surprisingly, the p5353,54 TAD2 mutant behaves as a "super-tumor suppressor," with an enhanced capacity to both suppress pancreatic cancer and transactivate select p53 target genes, including Ptpn14. Ptpn14 encodes a negative regulator of the Yap oncoprotein and is necessary and sufficient for pancreatic cancer suppression, like p53. We show that p53 deficiency promotes Yap signaling and that PTPN14 and TP53 mutations are mutually exclusive in human cancers. These studies uncover a p53-Ptpn14-Yap pathway that is integral to p53-mediated tumor suppression.


Subject(s)
Nuclear Proteins/physiology , Pancreatic Neoplasms/genetics , Protein Tyrosine Phosphatases, Non-Receptor/physiology , Transcription Factors/physiology , Tumor Suppressor Protein p53/physiology , Animals , Cell Cycle Proteins , Cell Proliferation , Cell Transformation, Neoplastic , Gene Expression Profiling , Humans , Mice , Mutation , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/prevention & control , Signal Transduction
8.
Nat Commun ; 8: 14686, 2017 03 08.
Article in English | MEDLINE | ID: mdl-28272465

ABSTRACT

Development of systems that reconstitute hallmark features of human pancreatic intraepithelial neoplasia (PanINs), the precursor to pancreatic ductal adenocarcinoma, could generate new strategies for early diagnosis and intervention. However, human cell-based PanIN models with defined mutations are unavailable. Here, we report that genetic modification of primary human pancreatic cells leads to development of lesions resembling native human PanINs. Primary human pancreas duct cells harbouring oncogenic KRAS and induced mutations in CDKN2A, SMAD4 and TP53 expand in vitro as epithelial spheres. After pancreatic transplantation, mutant clones form lesions histologically similar to native PanINs, including prominent stromal responses. Gene expression profiling reveals molecular similarities of mutant clones with native PanINs, and identifies potential PanIN biomarker candidates including Neuromedin U, a circulating peptide hormone. Prospective reconstitution of human PanIN development from primary cells provides experimental opportunities to investigate pancreas cancer development, progression and early-stage detection.


Subject(s)
Adenocarcinoma in Situ/genetics , Carcinoma, Pancreatic Ductal/genetics , Pancreatic Ducts/cytology , Pancreatic Neoplasms/genetics , Adult , Animals , Biomarkers, Tumor/metabolism , Cell Line , Cell Transplantation , Cyclin-Dependent Kinase Inhibitor p16 , Cyclin-Dependent Kinase Inhibitor p18/genetics , Female , Humans , Male , Mice , Middle Aged , Mutation , Neuropeptides/metabolism , Pancreatic Ducts/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Smad4 Protein/genetics , Transcriptome , Tumor Suppressor Protein p53/genetics
9.
PLoS One ; 9(12): e114535, 2014.
Article in English | MEDLINE | ID: mdl-25479605

ABSTRACT

The rat pheochromocytoma PC12 cell line is a widely used system to study neuronal differentiation for which sustained activation of the extracellular signaling related kinase (ERK) pathway is required. Here, we investigate the function of MK-STYX [MAPK (mitogen-activated protein kinase) phosphoserine/threonine/tyrosine-binding protein] in neuronal differentiation. MK-STYX is a member of the MAPK phosphatase (MKP) family, which is generally responsible for dephosphorylating the ERKs. However, MK-STYX lacks catalytic activity due to the absence of the nucleophilic cysteine in the active site signature motif HC(X5)R that is essential for phosphatase activity. Despite being catalytically inactive, MK-STYX has been shown to play a role in important cellular pathways, including stress responses. Here we show that PC12 cells endogenously express MK-STYX. In addition, MK-STYX, but not its catalytically active mutant, induced neurite-like outgrowths in PC12 cells. Furthermore, MK-STYX dramatically increased the number of cells with neurite extensions in response to nerve growth factor (NGF), whereas the catalytically active mutant did not. MK-STYX continued to induce neurites in the presence of a MEK (MAP kinase kinase) inhibitor suggesting that MK-STYX does not act through the Ras-ERK/MAPK pathway but is involved in another pathway whose inactivation leads to neuronal differentiation. RhoA activity assays indicated that MK-STYX induced extensions through the Rho signaling pathway. MK-STYX decreased RhoA activation, whereas RhoA activation increased when MK-STYX was down-regulated. Furthermore, MK-STYX affected downstream players of RhoA such as the actin binding protein cofilin. The presence of MK-STYX decreased the phosphorylation of cofilin in non NGF stimulated cells, but increased its phosphorylation in NGF stimulated cells, whereas knocking down MK-STYX caused an opposite effect. Taken together our data suggest that MK-STYX may be a regulator of RhoA signaling, and implicate this pseudophosphatase as a regulator of neuronal differentiation.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Cell Differentiation/physiology , MAP Kinase Signaling System/physiology , Neurites/metabolism , rhoA GTP-Binding Protein/metabolism , Animals , Apoptosis Regulatory Proteins/genetics , Mutation , PC12 Cells , Rats , rhoA GTP-Binding Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...