Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Mol Med ; 4(6): 402-12, 1998 Jun.
Article in English | MEDLINE | ID: mdl-10780883

ABSTRACT

BACKGROUND: Kaposi's sarcoma-associated herpesvirus (KSHV) encodes a 442 amino acid polypeptide-designated viral interferon regulatory factor (vIRF) that displays homology to members of the interferon regulatory factor (IRF) family that bind to consensus interferon sequences and transactivate cellular genes that can modulate growth inhibition. Studies were conducted to determine whether vIRF affects the growth suppression mediated by interferon-alpha (IFN-alpha) in a human B lymphocyte cell line. MATERIALS AND METHODS: The human B lymphocyte cell line Daudi, which is sensitive to the antiproliferative effects of IFN-alpha, was stably transfected to express vIRF, and the proliferative response of vIRF expressing cells to IFN-alpha was compared with controls. The effect of vIRF on IRF- 1 transactivation was analyzed by co-transfection of an IFN-alpha-responsive chloramphenicol acetyltransferase reporter and expression plasmids encoding IRF-1 and vIRF. Electrophoretic mobility shift assays were conducted to determine whether vIRF interferes with the DNA binding activity of IRF-1. RESULTS: Daudi human B lymphocyte cells expressing vIRF were resistant to the antiproliferative effects of IFN-alpha, whereas wild-type Daudi or Daudi cells transformed with vector DNA were growth inhibited by IFN-alpha. The activation of an interferon-responsive reporter by IFN-alpha or IRF-1 was repressed by expression of vIRF. IRF-1 DNA binding activity was unaffected by vIRF, and vIRF alone did not bind to the interferon consensus sequence. CONCLUSIONS: These studies revealed that vIRF functions to inhibit interferon-mediated growth control of a human B lymphocyte cell line by targeting IRF-1 transactivation of interferon-inducible genes. Since KSHV is a B lymphotropic herpesvirus associated with two forms of B lymphocyte neoplasms, these effects of vIRF likely contribute to B cell oncogenesis associated with KSHV infection.


Subject(s)
Herpesvirus 8, Human/chemistry , Interferon-alpha/pharmacology , Oncogene Proteins, Viral/metabolism , 3T3 Cells/drug effects , Animals , B-Lymphocytes/drug effects , B-Lymphocytes/metabolism , B-Lymphocytes/virology , Cell Division/drug effects , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Viral , HeLa Cells/drug effects , Humans , Interferon Regulatory Factor-1 , Interferon-alpha/metabolism , Interferon-beta/genetics , Mice , Oncogene Proteins, Viral/drug effects , Oncogene Proteins, Viral/genetics , Phosphoproteins/genetics , Phosphoproteins/metabolism , Promoter Regions, Genetic , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptional Activation , Transfection
2.
Virology ; 208(1): 9-18, 1995 Apr 01.
Article in English | MEDLINE | ID: mdl-11831735

ABSTRACT

Previous studies (C. C. Flowers and D. J. O'Callaghan, 1992, Virology 190, 307-315) employed peptide-specific antibodies to identify the product of the glycoprotein D (gD) gene of equine herpesvirus 1 strain Kentucky A (KyA). gD polypeptides of 55 and 58 kDa were detected in EHV-1-infected L-M cells, and the 58-kDa protein was observed in the membrane fraction of EHV-1 virions. In this report, the kinetics of synthesis and processing of gD polypeptides are described. One-hour pulse-labeling of EHV-1-infected L-M cells revealed that gD proteins are first detected at 6 hr after infection and that maximal synthesis of gD occurs between 5 and 8 hr postinfection. gD polypeptides accumulate progressively with time of infection as shown by immunoprecipitation analysis of gD proteins. Pulse-chase analysis of gD revealed that the 55-kDa protein is a precursor to the 58-kDa species and that processing of all pulse-labeled precursor protein requires approximately 2.5 hr. Analysis of the carbohydrate content of gD proteins, as judged by their sensitivity to digestion with endoglycosidases, revealed that the 55-kDa gD precursor contains high-mannose N-linked oligosaccharides, while the 58-kDa gD mature polypeptide possesses complex type oligosaccharides. Expression of the mature form of gD on the cell surface, as determined by fluorescent flow cytometric analysis, is delayed compared to the accumulation of the mature form of gD within the cell. The gD ORF encodes a potential protein of 442 amino acids but analysis of the translated sequence of gD indicated that the gD polypeptide is 392 amino acids, a size predicted by previous mapping of the transcription start site of the gD mRNA. Coupled in vitro transcription/translation of a pGEM-3Z construct containing the 392-amino-acid gD ORF, in the absence or presence of canine pancreatic microsomes, demonstrated that the 43-kDa gD polypeptide undergoes processing in vitro. These studies demonstrate that the EHV-1 strain KyA gD is processed in a fashion similar to that of the gD proteins of other alphaherpesviruses.


Subject(s)
Herpesvirus 1, Equid/metabolism , Viral Envelope Proteins/metabolism , Animals , Flow Cytometry , Gene Expression Regulation, Viral , L Cells , Mice , Plasmids , Protein Processing, Post-Translational , Transfection , Viral Envelope Proteins/genetics
3.
Virus Res ; 35(1): 17-34, 1995 Jan.
Article in English | MEDLINE | ID: mdl-7754672

ABSTRACT

Analyses of the synthesis and processing of recombinant full-length glycoprotein D of equine herpesvirus type 1 (EHV-1; gD392) or recombinant truncated gD (gD352) expressed in baculovirus-infected Sf9 cells revealed the following: (1) gD polypeptides encoded by both recombinant baculoviruses react with gD-specific antibodies including peptide-specific antiserum that neutralizes EHV-1 in a plaque reduction assay, (2) both the full-length recombinant gD392 and the truncated gD352 are expressed predominantly as gD species that contain high mannose-type oligosaccharides (55 kDa and 52 kDa, respectively), (3) both the full-length recombinant gD392 and the truncated gD352 are also expressed in lesser amounts as gD species that contain complex-type oligosaccharides (58 kDa and 55 kDa, respectively) as well as the unglycosylated forms of gD (43 kDa and 37 kDa, respectively), (4) flow cytometric analyses of cells expressing gD392 revealed that gD first appears on the cell surface at 24 h post infection; by 60 h, 95% of the cells express high levels of cell surface gD, (5) cells expressing gD352, in contrast to cells expressing gD392, secrete gD into the extracellular medium. This initial demonstration that immunoreactive EHV-1 glycoprotein D can be produced as a secreted polypeptide in the baculovirus system should provide reagents to assess the potential use of gD as a subunit vaccine in an animal model.


Subject(s)
Genetic Vectors/genetics , Herpesvirus 1, Equid/genetics , Membrane Proteins/biosynthesis , Nucleopolyhedroviruses/genetics , Recombinant Fusion Proteins/biosynthesis , Viral Envelope Proteins/biosynthesis , Animals , Antibodies, Viral/immunology , Cell Line , Glycosylation , Herpesvirus 1, Equid/immunology , Membrane Proteins/genetics , Membrane Proteins/immunology , Oligosaccharides/analysis , Protein Processing, Post-Translational , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/metabolism , Spodoptera , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology , Viral Envelope Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...