Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phytopathology ; 109(7): 1157-1170, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30860431

ABSTRACT

As complete host resistance in soybean has not been achieved, Sclerotinia stem rot (SSR) caused by Sclerotinia sclerotiorum continues to be of major economic concern for farmers. Thus, chemical control remains a prevalent disease management strategy. Pesticide evaluations were conducted in Illinois, Iowa, Michigan, Minnesota, New Jersey, and Wisconsin from 2009 to 2016, for a total of 25 site-years (n = 2,057 plot-level data points). These studies were used in network meta-analyses to evaluate the impact of 10 popular pesticide active ingredients, and seven common application timings on SSR control and yield benefit, compared with not treating with a pesticide. Boscalid and picoxystrobin frequently offered the best reductions in disease severity and best yield benefit (P < 0.0001). Pesticide applications (one- or two-spray programs) made during the bloom period provided significant reductions in disease severity index (DIX) (P < 0.0001) and led to significant yield benefits (P = 0.0009). Data from these studies were also used in nonlinear regression analyses to determine the effect of DIX on soybean yield. A three-parameter logistic model was found to best describe soybean yield loss (pseudo-R2 = 0.309). In modern soybean cultivars, yield loss due to SSR does not occur until 20 to 25% DIX, and considerable yield loss (-697 kg ha-1 or -10 bu acre-1) is observed at 68% DIX. Further analyses identified several pesticides and programs that resulted in greater than 60% probability for return on investment under high disease levels.


Subject(s)
Ascomycota , Glycine max/growth & development , Pesticides , Ascomycota/growth & development , Illinois , Iowa , Michigan , Minnesota , Plant Diseases/microbiology , Wisconsin
2.
Plant Dis ; 101(3): 434-441, 2017 Mar.
Article in English | MEDLINE | ID: mdl-30677348

ABSTRACT

Sudden death syndrome (SDS) of soybean, caused by Fusarium virguliforme, is a significant disease of soybean. The suite of factors that influence disease development is incompletely understood. The goal of this study was to determine the effects of pathogen population levels, crop residues, seed exudates, and their interactions on development of SDS and growth of F. virguliforme. Studies were conducted in a greenhouse with cultivars susceptible and partially resistant to SDS, four pathogen population levels, and six crop residue treatments (none; ground corn seed, stalks, and roots; ground soybean stems; and sorghum seed). Root rot was assessed 15 and 50 days after inoculation (dai) and foliar disease and plant biomass were assessed 50 dai. Population level increases and crop residues had significant interacting effects on increasing foliar disease severity and root rot and on biomass reduction. Disease severity was positively correlated with population and biomass was negatively correlated. Plants grown with no crop residues exhibited low or no root rot or foliar disease 15 dai, and severity was greatest with corn and sorghum seed. In vitro studies were conducted to test the effects of exudates collected from germinating soybean and corn seed on growth of F. virguliforme and F. solani. Growth of these fungi was greater in exudates than in water. More growth occurred in exudates collected during soybean radicle emergence than those sampled at other times during germination. These studies show that pathogen population levels and crop-derived nutrients in soil interact and influence severity of SDS. Results have implications for gaging disease risk and managing SDS.

3.
Phytopathology ; 105(12): 1601-11, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26368513

ABSTRACT

The ability to accurately detect and quantify Fusarium virguliforme, the cause of sudden death syndrome (SDS) in soybean, in samples such as plant root tissue and soil is extremely valuable for accurate disease diagnoses and to address research questions. Numerous quantitative real-time polymerase chain reaction (qPCR) assays have been developed for this pathogen but their sensitivity and specificity for F. virguliforme have not been compared. In this study, six qPCR assays were compared in five independent laboratories using the same set of DNA samples from fungi, plants, and soil. Multicopy gene-based assays targeting the ribosomal DNA intergenic spacer (IGS) or the mitochondrial small subunit (mtSSU) showed relatively high sensitivity (limit of detection [LOD] = 0.05 to 5 pg) compared with a single-copy gene (FvTox1)-based assay (LOD = 5 to 50 pg). Specificity varied greatly among assays, with the FvTox1 assay ranking the highest (100%) and two IGS assays being slightly less specific (95 to 96%). Another IGS assay targeting four SDS-causing fusaria showed lower specificity (70%), while the two mtSSU assays were lowest (41 and 47%). An IGS-based assay showed consistently highest sensitivity (LOD = 0.05 pg) and specificity and inclusivity above 94% and, thus, is suggested as the most useful qPCR assay for F. virguliforme diagnosis and quantification. However, specificity was also above 94% in two other assays and their selection for diagnostics and research will depend on objectives, samples, and materials used. These results will facilitate both fundamental and disease management research pertinent to SDS.


Subject(s)
Fusarium/isolation & purification , Glycine max/microbiology , Polymerase Chain Reaction/statistics & numerical data , Soil Microbiology , Fusarium/genetics , Plant Roots/microbiology , Polymerase Chain Reaction/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...