Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 10(9)2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34579457

ABSTRACT

The management of endangered or threatened plant species is difficult if protocols are not developed to propagate species for the purpose of restoration or the enhancement of existing populations. The management of endangered and threatened orchids is especially difficult because of the obligate interactions between orchids and orchid mycorrhizal fungi. Isotria medeoloides is a federally threatened forest-dwelling orchid species with a wide distribution in eastern North America. Seeds have not been successfully germinated and current management is based primarily on using subcanopy thinning to increase light in areas where monitoring demonstrates that populations are declining. We report the results of long-term monitoring efforts, canopy thinning, and orchid mycorrhizal fungus abundance studies at two locations in Virginia. The declining populations responded positively to the experimental and natural thinning of the canopy. At one site, the response was the result of understory canopy thinning. At the second site, the response was due to the natural death of a canopy tree. In light of the dramatic increase in fungal abundance following death of the canopy tree, we propose the Fungal Abundance Hypothesis as an additional approach to the management of endangered plant species. The removal of canopy trees in or adjacent to Isotria populations results in an increase in dead belowground biomass (i.e., roots of the dead canopy tree) that provides substrates for microbial growth, including orchid mycorrhizal fungi, that benefit Isotria.

2.
J Athl Train ; 54(3): 237-244, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30870008

ABSTRACT

CONTEXT: Athletic trainers (ATs) must be equipped with evidence to inform their clinical practice. A systematic, inclusive, and continuous process for exploring research priorities is vital to the success of ATs and, more importantly, their patients' positive outcomes. OBJECTIVE: To identify research priorities and unify research with clinical practice to improve patient care and advance the profession. DESIGN: Mixed-methods study. SETTING: Focus groups and a Web-based survey. PATIENTS OR OTHER PARTICIPANTS: A total of 87 ATs (43 men [49.4%], 44 women [50.6%]; age = 40 ± 11 years; experience = 18 ± 11 years) participated in focus groups. Of the 49 332 e-mails sent, 580 were undeliverable, 5131 ATs started the survey (access rate = 10.5%), and 4514 agreed to participate (response rate = 9.3%). MAIN OUTCOME MEASURE(S): Our study consisted of 6 focus-group sessions, a content-expert review, and a Web-based survey. Themes from the focus groups were used to develop the research priorities and survey instrument. We used the 25-item validated survey to determine whether the research priorities and findings of the focus groups were generalizable. Endorsement of research priorities and recommendations was achieved when respondents indicated they agreed or strongly agreed. RESULTS: Respondents endorsed 5 research priorities: health care competency (n = 4438/4493, 98.8%), vitality of the profession (n = 4319/4455, 96.9%), health professions education (n = 3966/4419, 89.8%), health care economics (n = 4246/4425, 96.0%), and health information technology (n = 3893/4438, 87.7%). We also made the following recommendations: (1) develop funding initiatives that align with the agenda, (2) develop postdoctoral fellowships focused on clinical research, (3) facilitate collaborative relationships between clinicians and researchers, and (4) make research evidence more readily available and more applicable. CONCLUSIONS: Using a systematic and inclusive process, we developed a prioritized research agenda for the athletic training profession. The agenda was endorsed by the leaders of each Strategic Alliance organization and adopted as the Athletic Training Research Agenda.


Subject(s)
Physical Education and Training/organization & administration , Sports/education , Adult , Advisory Committees , Capital Financing , Female , Health Personnel/education , Humans , Male , Middle Aged , Patient Care/standards , Professional Competence , Research , Research Design , Surveys and Questionnaires
3.
PLoS One ; 12(8): e0183089, 2017.
Article in English | MEDLINE | ID: mdl-28832600

ABSTRACT

Oxidative stress is considered a major cause of the structural and functional changes associated with auditory pathologies induced by exposure to acute acoustic trauma AAT). In the present study, we examined the otoprotective effects of 2,4-disulfophenyl-N-tert-butylnitrone (HPN-07), a nitrone-based free radical trap, on the physiological and cellular changes in the auditory system of chinchilla following a six-hour exposure to 4 kHz octave band noise at 105 dB SPL. HPN-07 has been shown to suppress oxidative stress in biological models of a variety of disorders. Our results show that administration of HPN-07 beginning four hours after acoustic trauma accelerated and enhanced auditory/cochlear functional recovery, as measured by auditory brainstem responses (ABR), distortion product otoacoustic emissions (DPOAE), compound action potentials (CAP), and cochlear microphonics (CM). The normally tight correlation between the endocochlear potential (EP) and evoked potentials of CAP and CM were persistently disrupted after noise trauma in untreated animals but returned to homeostatic conditions in HPN-07 treated animals. Histological analyses revealed several therapeutic advantages associated with HPN-07 treatment following AAT, including reductions in inner and outer hair cell loss; reductions in AAT-induced loss of calretinin-positive afferent nerve fibers in the spiral lamina; and reductions in fibrocyte loss within the spiral ligament. These findings support the conclusion that early intervention with HPN-07 following an AAT efficiently blocks the propagative ototoxic effects of oxidative stress, thereby preserving the homeostatic and functional integrity of the cochlea.


Subject(s)
Benzenesulfonates/pharmacology , Cochlea/drug effects , Free Radical Scavengers/pharmacology , Wounds and Injuries/physiopathology , Action Potentials , Acute Disease , Animals , Chinchilla , Cochlea/injuries , Cochlea/physiopathology , Female , Wounds and Injuries/pathology
4.
Free Radic Biol Med ; 108: 627-643, 2017 07.
Article in English | MEDLINE | ID: mdl-28438658

ABSTRACT

Cochlear neurodegeneration commonly accompanies hair cell loss resulting from aging, ototoxicity, or exposures to intense noise or blast overpressures. However, the precise pathophysiological mechanisms that drive this degenerative response have not been fully elucidated. Our laboratory previously demonstrated that non-transgenic rats exposed to blast overpressures exhibited marked somatic accumulation of neurotoxic variants of the microtubule-associated protein, Tau, in the hippocampus. In the present study, we extended these analyses to examine neurodegeneration and pathologic Tau accumulation in the auditory system in response to blast exposure and evaluated the potential therapeutic efficacy of antioxidants on short-circuiting this pathological process. Blast injury induced ribbon synapse loss and retrograde neurodegeneration in the cochlea in untreated animals. An accompanying perikaryal accumulation of neurofilament light chain and pathologic Tau oligomers were observed in neurons from both the peripheral and central auditory system, spanning from the spiral ganglion to the auditory cortex. Due to its coincident accumulation pattern and well-documented neurotoxicity, our results suggest that the accumulation of pathologic Tau oligomers may actively contribute to blast-induced cochlear neurodegeneration. Therapeutic intervention with a combinatorial regimen of 2,4-disulfonyl α-phenyl tertiary butyl nitrone (HPN-07) and N-acetylcysteine (NAC) significantly reduced both pathologic Tau accumulation and indications of ongoing neurodegeneration in the cochlea and the auditory cortex. These results demonstrate that a combination of HPN-07 and NAC administrated shortly after a blast exposure can serve as a potential therapeutic strategy for preserving auditory function among military personnel or civilians with blast-induced traumatic brain injuries.


Subject(s)
Acetylcysteine/therapeutic use , Antioxidants/therapeutic use , Benzenesulfonates/therapeutic use , Blast Injuries/drug therapy , Hair Cells, Auditory/physiology , Neurodegenerative Diseases/drug therapy , Neurons/physiology , Vestibulocochlear Nerve Diseases/drug therapy , Animals , Auditory Cortex/pathology , Cell Death , Cells, Cultured , Male , Rats , Rats, Inbred Strains , Spiral Ganglion/pathology , Unfolded Protein Response , tau Proteins/metabolism
5.
Oxid Med Cell Longev ; 2016: 4159357, 2016.
Article in English | MEDLINE | ID: mdl-27034735

ABSTRACT

Traumatic brain injury (TBI) can lead to early onset dementia and other related neurodegenerative diseases. We previously demonstrated that damage to the central auditory pathway resulting from blast-induced TBI (bTBI) could be significantly attenuated by a combinatorial antioxidant treatment regimen. In the current study, we examined the localization patterns of normal Tau and the potential blast-induced accumulation of neurotoxic variants of this microtubule-associated protein that are believed to potentiate the neurodegenerative effects associated with synaptic dysfunction in the hippocampus following three successive blast overpressure exposures in nontransgenic rats. We observed a marked increase in the number of both hyperphosphorylated and oligomeric Tau-positive hilar mossy cells and somatic accumulation of endogenous Tau in oligodendrocytes in the hippocampus. Remarkably, a combinatorial regimen of 2,4-disulfonyl α-phenyl tertiary butyl nitrone (HPN-07) and N-acetylcysteine (NAC) resulted in striking reductions in the numbers of both mossy cells and oligodendrocytes positively labeled for these pathological Tau immunoreactivity patterns in response to bTBI. This treatment strategy represents a promising therapeutic approach for simultaneously reducing or eliminating both primary auditory injury and nonauditory changes associated with bTBI-induced hippocampal neurodegeneration.


Subject(s)
Acetylcysteine/therapeutic use , Antioxidants/therapeutic use , Benzenesulfonates/therapeutic use , Blast Injuries/drug therapy , Brain Injuries, Traumatic/drug therapy , Hippocampus/drug effects , Protein Aggregation, Pathological/prevention & control , tau Proteins/metabolism , Acetylcysteine/pharmacology , Animals , Antioxidants/pharmacology , Benzenesulfonates/pharmacology , Blast Injuries/complications , Blast Injuries/metabolism , Blast Injuries/pathology , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/pathology , Cytoprotection/drug effects , Disease Models, Animal , Hippocampus/metabolism , Hippocampus/pathology , Male , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Protein Aggregation, Pathological/metabolism , Protein Aggregation, Pathological/pathology , Rats , Rats, Long-Evans
6.
PLoS One ; 10(12): e0145305, 2015.
Article in English | MEDLINE | ID: mdl-26694648

ABSTRACT

A2E and related toxic molecules are part of lipofuscin found in the retinal pigment epithelial (RPE) cells in eyes affected by Stargardt's disease, age-related macular degeneration (AMD), and other retinal degenerations. A novel therapeutic approach for treating such degenerations involves slowing down the visual cycle, which could reduce the amount of A2E in the RPE. This can be accomplished by inhibiting RPE65, which produces 11-cis-retinol from all-trans-retinyl esters. We recently showed that phenyl-N-tert-butylnitrone (PBN) inhibits RPE65 enzyme activity in RPE cells. In this study we show that like PBN, certain PBN-derivatives (PBNDs) such as 4-F-PBN, 4-CF3-PBN, 3,4-di-F-PBN, and 4-CH3-PBN can inhibit RPE65 and synthesis of 11-cis-retinol in in vitro assays using bovine RPE microsomes. We further demonstrate that systemic (intraperitoneal, IP) administration of these PBNDs protect the rat retina from light damage. Electroretinography (ERG) and histological analysis showed that rats treated with PBNDs retained ~90% of their photoreceptor cells compared to a complete loss of function and 90% loss of photoreceptors in the central retina in rats treated with vehicle/control injections. Topically applied PBN and PBNDs also significantly slowed the rate of the visual cycle in mouse and baboon eyes. One hour dark adaptation resulted in 75-80% recovery of bleachable rhodopsin in control/vehicle treated mice. Eye drops of 5% 4-CH3-PBN were most effective, inhibiting the regeneration of bleachable rhodopsin significantly (60% compared to vehicle control). In addition, a 10% concentration of PBN and 5% concentration of 4-CH3-PBN in baboon eyes inhibited the visual cycle by 60% and by 30%, respectively. We have identified a group of PBN related nitrones that can reach the target tissue (RPE) by systemic and topical application and slow the rate of rhodopsin regeneration and therefore the visual cycle in mouse and baboon eyes. PBNDs can also protect the rat retina from light damage. There is potential in developing these compounds as preventative therapeutics for the treatment of human retinal degenerations in which the accumulation of lipofuscin may be pathogenic.


Subject(s)
Cyclic N-Oxides/administration & dosage , Light/adverse effects , Retinal Diseases/prevention & control , Retinal Pigment Epithelium/drug effects , Rhodopsin/metabolism , Animals , Cattle , Cyclic N-Oxides/chemistry , Cyclic N-Oxides/pharmacology , Female , Injections, Intraperitoneal , Male , Mice , Papio anubis , Rats , Retinal Diseases/etiology , Retinal Diseases/metabolism , Retinal Pigment Epithelium/radiation effects , cis-trans-Isomerases/antagonists & inhibitors , cis-trans-Isomerases/metabolism
7.
J Cell Sci ; 127(Pt 18): 3928-42, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-25015296

ABSTRACT

Focal adhesions are macromolecular complexes that connect the actin cytoskeleton to the extracellular matrix. Dynamic turnover of focal adhesions is crucial for cell migration. Paxillin is a multi-adaptor protein that plays an important role in regulating focal adhesion dynamics. Here, we identify TRIM15, a member of the tripartite motif protein family, as a paxillin-interacting factor and a component of focal adhesions. TRIM15 localizes to focal contacts in a myosin-II-independent manner by an interaction between its coiled-coil domain and the LD2 motif of paxillin. Unlike other focal adhesion proteins, TRIM15 is a stable focal adhesion component with restricted mobility due to its ability to form oligomers. TRIM15-depleted cells display impaired cell migration and reduced focal adhesion disassembly rates, in addition to enlarged focal adhesions. Thus, our studies demonstrate a cellular function for TRIM15 as a regulatory component of focal adhesion turnover and cell migration.


Subject(s)
Carrier Proteins/metabolism , Focal Adhesions/metabolism , Histocompatibility Antigens/metabolism , Animals , Carrier Proteins/genetics , Cell Movement , Focal Adhesions/chemistry , Focal Adhesions/genetics , Histocompatibility Antigens/genetics , Humans , Intracellular Signaling Peptides and Proteins , Kinetics , Mice , Paxillin/genetics , Paxillin/metabolism , Protein Binding , Protein Transport , Tripartite Motif Proteins
8.
J Assoc Res Otolaryngol ; 15(3): 353-72, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24497307

ABSTRACT

The present study marks the first evaluation of combined application of the antioxidant N-acetylcysteine (NAC) and the free radical spin trap reagent, disodium 2,4-disulfophenyl-N-tert-butylnitrone (HPN-07), as a therapeutic approach for noise-induced hearing loss (NIHL). Pharmacokinetic studies and C-14 tracer experiments demonstrated that both compounds achieve high blood levels within 30 min after i.p injection, with sustained levels of radiolabeled cysteine (released from NAC) in the cochlea, brainstem, and auditory cortex for up to 48 h. Rats exposed to 115 dB octave-band noise (10-20 kHz) for 1 h were treated with combined NAC/HPN-07 beginning 1 h after noise exposure and for two consecutive days. Auditory brainstem responses (ABR) showed that treatment substantially reduced the degree of threshold shift across all test frequencies (2-16 kHz), beginning at 24 h after noise exposure and continuing for up to 21 days. Reduced distortion product otoacoustic emission (DPOAE) level shifts were also detected at 7 and 21 days following noise exposure in treated animals. Noise-induced hair cell (HC) loss, which was localized to the basal half of the cochlea, was reduced in treated animals by 85 and 64% in the outer and inner HC regions, respectively. Treatment also significantly reduced an increase in c-fos-positive neuronal cells in the cochlear nucleus following noise exposure. However, no detectable spiral ganglion neuron loss was observed after noise exposure. The results reported herein demonstrate that the NAC/HPN-07 combination is a promising pharmacological treatment of NIHL that reduces both temporary and permanent threshold shifts after intense noise exposure and acts to protect cochlear sensory cells, and potentially afferent neurites, from the damaging effects of acoustic trauma. In addition, the drugs were shown to reduce aberrant activation of neurons in the central auditory regions of the brain following noise exposure. It is likely that the protective mechanisms are related to preservation of structural components of the cochlea and blocking the activation of immediate early genes in the auditory centers of the brain.


Subject(s)
Acetylcysteine/pharmacology , Antioxidants/pharmacology , Benzenesulfonates/pharmacology , Cochlear Nucleus/drug effects , Ear, Inner/drug effects , Hearing Loss, Noise-Induced/drug therapy , Neuroprotective Agents/pharmacology , Noise/adverse effects , Acetylcysteine/pharmacokinetics , Animals , Benzenesulfonates/pharmacokinetics , Cochlear Nucleus/pathology , Cochlear Nucleus/physiology , Ear, Inner/pathology , Ear, Inner/physiology , Evoked Potentials, Auditory, Brain Stem/drug effects , Hair Cells, Auditory/drug effects , Male , Otoacoustic Emissions, Spontaneous/drug effects , Proto-Oncogene Proteins c-fos/analysis , Rats , Rats, Long-Evans , Spin Trapping , Spiral Ganglion/pathology
9.
Biochim Biophys Acta ; 1840(2): 722-9, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23644035

ABSTRACT

BACKGROUND: Immuno-spin trapping (IST) is based on the reaction of a spin trap with a free radical to form a stable nitrone adduct, followed by the use of antibodies, rather than traditional electron paramagnetic resonance spectroscopy, to detect the nitrone adduct. IST has been successfully applied to mechanistic in vitro studies, and recently, macromolecule-centered radicals have been detected in models of drug-induced agranulocytosis, hepatotoxicity, cardiotoxicity, and ischemia/reperfusion, as well as in models of neurological, metabolic and immunological diseases. SCOPE OF THE REVIEW: To critically evaluate advances, challenges, and pitfalls as well as the scientific opportunities of IST as applied to the study of protein-centered free radicals generated in stressed organelles, cells, tissues and animal models of disease and exposure. MAJOR CONCLUSIONS: Because the spin trap has to be present at high enough concentrations in the microenvironment where the radical is formed, the possible effects of the spin trap on gene expression, metabolism and cell physiology have to be considered in the use of IST and in the interpretation of results. These factors have not yet been thoroughly dealt with in the literature. GENERAL SIGNIFICANCE: The identification of radicalized proteins during cell/tissue response to stressors will help define their role in the complex cellular response to stressors and pathogenesis; however, the fidelity of spin trapping/immuno-detection and the effects of the spin trap on the biological system should be considered. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.


Subject(s)
Free Radicals/analysis , Immunoglobulin G/immunology , Nitrogen Oxides/chemistry , Proteins/immunology , Spin Trapping/methods , Animals , Biochemistry , Free Radicals/isolation & purification , Humans , Nitrogen Oxides/immunology
10.
PLoS One ; 8(11): e80138, 2013.
Article in English | MEDLINE | ID: mdl-24224042

ABSTRACT

Blast-induced traumatic brain injury has dramatically increased in combat troops in today's military operations. We previously reported that antioxidant treatment can provide protection to the peripheral auditory end organ, the cochlea. In the present study, we examined biomarker expression in the brains of rats at different time points (3 hours to 21 days) after three successive 14 psi blast overpressure exposures to evaluate antioxidant treatment effects on blast-induced brain injury. Rats in the treatment groups received a combination of antioxidants (2,4-disulfonyl α-phenyl tertiary butyl nitrone and N-acetylcysteine) one hour after blast exposure and then twice a day for the following two days. The biomarkers examined included an oxidative stress marker (4-hydroxy-2-nonenal, 4-HNE), an immediate early gene (c-fos), a neural injury marker (glial fibrillary acidic protein, GFAP) and two axonal injury markers [amyloid beta (A4) precursor protein, APP, and 68 kDa neurofilament, NF-68]. The results demonstrate that blast exposure induced or up-regulated the following: 4-HNE production in the dorsal hippocampus commissure and the forceps major corpus callosum near the lateral ventricle; c-fos and GFAP expression in most regions of the brain, including the retrosplenial cortex, the hippocampus, the cochlear nucleus, and the inferior colliculus; and NF-68 and APP expression in the hippocampus, the auditory cortex, and the medial geniculate nucleus (MGN). Antioxidant treatment reduced the following: 4-HNE in the hippocampus and the forceps major corpus callosum, c-fos expression in the retrosplenial cortex, GFAP expression in the dorsal cochlear nucleus (DCN), and APP and NF-68 expression in the hippocampus, auditory cortex, and MGN. This preliminary study indicates that antioxidant treatment may provide therapeutic protection to the central auditory pathway (the DCN and MGN) and the non-auditory central nervous system (hippocampus and retrosplenial cortex), suggesting that these compounds have the potential to simultaneously treat blast-induced injuries in the brain and auditory system.


Subject(s)
Antioxidants/therapeutic use , Blast Injuries/drug therapy , Brain Injuries/drug therapy , Amyloidogenic Proteins/metabolism , Animals , Blast Injuries/metabolism , Brain Injuries/metabolism , Cochlear Nucleus/metabolism , Geniculate Bodies/metabolism , Glial Fibrillary Acidic Protein/metabolism , Male , Neurofilament Proteins/metabolism , Rats
11.
Free Radic Biol Med ; 62: 145-156, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23419732

ABSTRACT

The possibility of free radical reactions occurring in biological processes led to the development and employment of novel methods and techniques focused on determining their existence and importance in normal and pathological conditions. For this reason the use of nitrones for spin trapping free radicals became widespread in the 1970s and 1980s, when surprisingly the first evidence of their potent biological properties was noted. Since then widespread exploration and demonstration of the potent biological properties of phenyl-tert-butylnitrone (PBN) and its derivatives took place in preclinical models of septic shock and then in experimental stroke. The most extensive commercial effort made to capitalize on the potent properties of the PBN-nitrones was for acute ischemic stroke. This occurred during 1993-2006, when the 2,4-disulfonylphenyl PBN derivative, called NXY-059 in the stroke studies, was shown to be safe in humans and was taken all the way through clinical phase 3 trials and then was deemed to be ineffective. As summarized in this review, because of its excellent human safety profile, 2,4-disulfonylphenyl PBN, now called OKN-007 in the cancer studies, was tested as an anti-cancer agent in several preclinical glioma models and shown to be very effective. Based on these studies this compound is now scheduled to enter into early clinical trials for astrocytoma/glioblastoma multiforme this year. The potential use of OKN-007 in combination with neurotropic compounds such as the lanthionine ketamine esters is discussed for glioblastoma multiforme as well as for various other indications leading to dementia, such as aging, septic shock, and malaria infections. There is much more research and development activity ongoing for various indications with the nitrones, alone or in combination with other active compounds, as briefly noted in this review.


Subject(s)
Alanine/analogs & derivatives , Antineoplastic Agents/administration & dosage , Cyclic N-Oxides/administration & dosage , Neurodegenerative Diseases/drug therapy , Sulfides/administration & dosage , Alanine/administration & dosage , Benzenesulfonates/administration & dosage , Drug Combinations , Free Radicals/metabolism , Humans , Imines/administration & dosage , Neoplasms/drug therapy , Neurodegenerative Diseases/pathology
12.
Neuro Oncol ; 15(3): 330-40, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23328810

ABSTRACT

BACKGROUND: Glioblastoma multiforme, a World Health Organization grade IV glioma, has a poor prognosis in humans despite current treatment options. Here, we present magnetic resonance imaging (MRI) data regarding the regression of aggressive rat F98 gliomas and human U87 glioma xenografts after treatment with the nitrone compound OKN-007, a disulfonyl derivative of α-phenyl-tert-butyl nitrone. METHODS: MRI was used to assess tumor volumes in F98 and U87 gliomas, and bioluminescence imaging was used to measure tumor volumes in F98 gliomas encoded with the luciferase gene (F98(luc)). Immunohistochemistry was used to assess angiogenesis (vascular endothelial growth factor [VEGF] and microvessel density [MVD]), cell differentiation (carbonic anhydrase IX [CA-IX]), hypoxia (hypoxia-inducible factor-1α [HIF-1α]), cell proliferation (glucose transporter 1 [Glut-1] and MIB-1), proliferation index, and apoptosis (cleaved caspase 3) markers in F98 gliomas. VEGF, CA-IX, Glut-1, HIF-1α, and cleaved caspase 3 were assessed in U87 gliomas. RESULTS: Animal survival was found to be significantly increased (P < .001 for F98, P < .01 for U87) in the group that received OKN-007 treatment compared with the untreated groups. After MRI detection of F98 gliomas, OKN-007, administered orally, was found to decrease tumor growth (P < .05). U87 glioma volumes were found to significantly decrease (P < .05) after OKN-007 treatment, compared with untreated animals. OKN-007 administration resulted in significant decreases in tumor hypoxia (HIF-1α [P < .05] in both F98 and U87), angiogenesis (MVD [P < .05], but not VEGF, in F98 or U87), and cell proliferation (Glut-1 [P < .05 in F98, P < .01 in U87] and MIB-1 [P < .01] in F98) and caused a significant increase in apoptosis (cleaved caspase 3 [P < .001 in F98, P < .05 in U87]), compared with untreated animals. CONCLUSIONS: OKN-007 may be considered as a promising therapeutic addition or alternative for the treatment of aggressive human gliomas.


Subject(s)
Apoptosis , Benzenesulfonates/pharmacology , Brain Neoplasms/prevention & control , Cell Proliferation , Glioma/prevention & control , Imines/pharmacology , Neovascularization, Pathologic/prevention & control , Animals , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Differentiation , Cell Movement , Glioma/metabolism , Glioma/pathology , Humans , Immunoenzyme Techniques , Luminescent Measurements , Magnetic Resonance Imaging , Rats , Rats, Inbred F344 , Rats, Nude , Survival Rate , Tumor Cells, Cultured
13.
Genes Chromosomes Cancer ; 52(3): 225-36, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23109092

ABSTRACT

Human sulfatase 2 (SULF2) functions as an oncoprotein in hepatocellular carcinoma (HCC) development by promoting tumor growth and metastasis via enhancement of fibroblast growth factor-2/extracellular signal-regulated kinase and WNT/ß-catenin signaling. Recent results implicate that SULF2 activates the transforming growth factor beta (TGFB) and Hedgehog/GLI1 pathways in HCC. OKN-007 is a novel phenyl-sulfonyl compound that inhibits the enzymatic activity of SULF2. To investigate the antitumor effect of OKN-007 in HCC, we treated Huh7 cells, which express high levels of SULF2, with OKN-007 and found that it significantly promoted tumor cell apoptosis and inhibited cell proliferation, viability, and migration. To understand the action of OKN-007 on SULF2, we used Huh7 cells which normally express SULF2 and Hep3B cells that do not normally express SULF2. Utilizing Huh7 cells transfected with short hairpin RNA targeting SULF2 and transfection of Hep3B cells with a SULF2 plasmid to enhance SULF2 expression, we showed that the antitumor activity of OKN-007 was more pronounced in cells expressing SULF2. Furthermore, in vivo experiments verified that OKN-007 repressed tumor growth significantly. These results identify SULF2 as an important target of the antitumor effect of OKN-007. To determine the molecular mechanism of the antitumor effect of OKN-007, both TGFB1/SMAD and Hedgehog/GLI1 signaling pathway activity were measured by Western blot and SMAD- or GLI-reporter luciferase assays. We found that both signaling pathways were inhibited by OKN-007. Together, these results show that OKN-007 can suppress TGFB1/SMAD and Hedgehog/GLI1 signaling via its inhibition of SULF2 enzymatic activity. We conclude that OKN-007 or more potent derivatives may be promising agents for the treatment of HCC.


Subject(s)
Antineoplastic Agents/pharmacology , Benzenesulfonates/pharmacology , Carcinoma, Hepatocellular/metabolism , Imines/pharmacology , Liver Neoplasms/metabolism , Signal Transduction/drug effects , Sulfotransferases/antagonists & inhibitors , Animals , Apoptosis/drug effects , Carcinoma, Hepatocellular/genetics , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/genetics , Gene Expression , Gene Knockdown Techniques , Hedgehog Proteins/metabolism , Humans , Liver Neoplasms/genetics , Mice , Mice, Nude , Oncogene Proteins/metabolism , RNA Interference , Smad2 Protein/metabolism , Sulfatases , Sulfotransferases/genetics , Trans-Activators/metabolism , Transforming Growth Factor beta1/metabolism , Zinc Finger Protein GLI1
14.
Hear Res ; 285(1-2): 29-39, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22326291

ABSTRACT

Exposure to blast overpressure has become one of the hazards of both military and civilian life in many parts of the world due to war and terrorist activity. Auditory damage is one of the primary sequela of blast trauma, affecting immediate situational awareness and causing permanent hearing loss. Protecting against blast exposure is limited by the inability to anticipate the timing of these exposures, particularly those caused by terrorists. Therefore a therapeutic regimen is desirable that is able to ameliorate auditory damage when administered after a blast exposure has occurred. The purpose of this study was to determine if administration of a combination of antioxidants 2,4-disulfonyl α-phenyl tertiary butyl nitrone (HPN-07) and N-acetylcysteine (NAC) beginning 1 h after blast exposure could reduce both temporary and permanent hearing loss. To this end, a blast simulator was developed and the operational conditions established for exposing rats to blast overpressures comparable to those encountered in an open-field blast of 14 pounds per square inch (psi). This blast model produced reproducible blast overpressures that resulted in physiological and physical damage to the auditory system that was proportional to the number and amplitude of the blasts. After exposure to 3 consecutive 14 psi blasts 100% of anesthetized rats had permanent hearing loss as determined at 21 days post exposure by auditory brainstem response (ABR) and distortion product otoacoustic emission (DPOAE) testing. Animals treated with HPN-07 and NAC after blast exposure showed a significant reduction in ABR threshold shifts and DPOAE level shifts at 2-16 kHz with significant reduction in inner hair cell (IHC) and outer hair cell (OHC) loss across the 5-36 kHz region of the cochlea compared with control animals. The time course of changes in the auditory system was documented at 3 h, 24 h, 7 day and 21 day after blast exposure. At 3 h after blast exposure the auditory brainstem response (ABR) threshold shifts were elevated by 60 dB in both treated and control groups. A partial recovery of to 35 dB was observed at 24 h in the controls, indicative of a temporary threshold shift (TTS) and there was essentially no further recovery by 21 days representing a permanent threshold shift (PTS) of about 30 dB. Antioxidant treatment increased the amount of both TTS and PTS recovery relative to controls by 10 and 20 dB respectively. Distortion product otoacoustic emission (DPOAE) reached a maximum level shift of 25-30 dB measured in both control and treated groups at 3 h after blast exposure. These levels did not change by day 21 in the control group but in the treatment group the level shifts began to decline at 24 h until by day 21 they were 10-20 dB below that of the controls. Loss of cochlear hair cells measured at 21 day after blast exposure was mostly in the outer hair cells (OHC) and broadly distributed across the basilar membrane, consistent with the distribution of loss of frequency responses as measured by ABR and DPOAE analysis and typical of blast-induced damage. OHC loss progressively increased after blast exposure reaching an average loss of 32% in the control group and 10% in the treated group at 21 days. These findings provide the first evidence that a combination of antioxidants, HPN-07 and NAC, can both enhance TTS recovery and prevent PTS by reducing damage to the mechanical and neural components of the auditory system when administered shortly after blast exposure.


Subject(s)
Antioxidants/therapeutic use , Cochlea/drug effects , Cochlea/injuries , Hearing Loss, Noise-Induced/drug therapy , Acetylcysteine/administration & dosage , Acetylcysteine/therapeutic use , Animals , Antioxidants/administration & dosage , Auditory Threshold/drug effects , Benzenesulfonates/administration & dosage , Benzenesulfonates/therapeutic use , Cochlea/pathology , Cochlea/physiopathology , Disease Models, Animal , Drug Therapy, Combination , Evoked Potentials, Auditory, Brain Stem/drug effects , Hair Cells, Auditory, Inner/drug effects , Hair Cells, Auditory, Inner/pathology , Hair Cells, Auditory, Inner/physiology , Hair Cells, Auditory, Outer/drug effects , Hair Cells, Auditory, Outer/pathology , Hair Cells, Auditory, Outer/physiology , Hearing Loss, Noise-Induced/pathology , Hearing Loss, Noise-Induced/physiopathology , Male , Otoacoustic Emissions, Spontaneous/drug effects , Rats , Rats, Long-Evans , Time Factors
15.
Hear Res ; 283(1-2): 1-13, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22178982

ABSTRACT

The purpose of this study was to reveal synaptic plasticity within the dorsal cochlear nucleus (DCN) as a result of noise trauma and to determine whether effective antioxidant protection to the cochlea can also impact plasticity changes in the DCN. Expression of synapse activity markers (synaptophysin and precerebellin) and ultrastructure of synapses were examined in the DCN of chinchilla 10 days after a 105 dB SPL octave-band noise (centered at 4 kHz, 6 h) exposure. One group of chinchilla was treated with a combination of antioxidants (4-hydroxy phenyl N-tert-butylnitrone, N-acetyl-l-cysteine and acetyl-l-carnitine) beginning 4 h after noise exposure. Down-regulated synaptophysin and precerebellin expression, as well as selective degeneration of nerve terminals surrounding cartwheel cells and their primary dendrites were found in the fusiform soma layer in the middle region of the DCN of the noise exposure group. Antioxidant treatment significantly reduced synaptic plasticity changes surrounding cartwheel cells. Results of this study provide further evidence of acoustic trauma-induced neural plasticity in the DCN and suggest that loss of input to cartwheel cells may be an important factor contributing to the emergence of hyperactivity in the DCN after noise exposure. Results further suggest that early antioxidant treatment for acoustic trauma not only rescues cochlear hair cells, but also has impact on central auditory structures.


Subject(s)
Antioxidants/pharmacology , Cochlear Nucleus/drug effects , Hearing Loss, Noise-Induced/drug therapy , Neuronal Plasticity/drug effects , Synapses/drug effects , Synaptic Transmission/drug effects , Acetylcarnitine/pharmacology , Acetylcysteine/pharmacology , Animals , Auditory Threshold/drug effects , Biomarkers/metabolism , Chinchilla , Cochlear Nucleus/metabolism , Cochlear Nucleus/physiopathology , Cochlear Nucleus/ultrastructure , Disease Models, Animal , Drug Therapy, Combination , Hair Cells, Auditory/drug effects , Hair Cells, Auditory/pathology , Hearing Loss, Noise-Induced/metabolism , Hearing Loss, Noise-Induced/pathology , Hearing Loss, Noise-Induced/physiopathology , Imines/pharmacology , Interneurons/drug effects , Interneurons/pathology , Microscopy, Electron, Transmission , Phenols/pharmacology , Protein Precursors/metabolism , Synapses/metabolism , Synapses/ultrastructure , Synaptophysin/metabolism , Time Factors
16.
Int J Otolaryngol ; 2011: 612690, 2011.
Article in English | MEDLINE | ID: mdl-21961007

ABSTRACT

Objective. Inhibition of inflammation and free radical formation in the cochlea may be involved in antioxidant treatment in acute acoustic trauma. Procedure. Chinchilla were exposed to 105 dB sound pressure level octave band noise for 6 hours. One group of chinchilla was treated with antioxidants after noise exposure. Auditory brainstem responses, outer hair cell counts, and immunohistochemical analyses of biomarkers in the cochlea were conducted. Results. The antioxidant treatment significantly reduced hearing threshold shifts, outer hair cell loss, numbers of CD45(+) cells, as well as 4-hydroxy-2-nonenal and nitrotyrosine formation in the cochlea. Conclusion. Antioxidant treatment may provide protection to sensory cells by inhibiting formation of reactive oxygen and nitrogen products and migration of mononuclear phagocytes in the cochlea. The present study provides further evidence of effectiveness of antioxidant treatment in reducing permanent hearing loss.

17.
J Biol Chem ; 286(37): 32491-501, 2011 Sep 16.
Article in English | MEDLINE | ID: mdl-21785167

ABSTRACT

α-Phenyl-N-tert-butylnitrone (PBN), a free radical spin trap, has been shown previously to protect retinas against light-induced neurodegeneration, but the mechanism of protection is not known. Here we report that PBN-mediated retinal protection probably occurs by slowing down the rate of rhodopsin regeneration by inhibiting RPE65 activity. PBN (50 mg/kg) protected albino Sprague-Dawley rat retinas when injected 0.5-12 h before exposure to damaging light at 2,700 lux intensity for 6 h but had no effect when administered after the exposure. PBN injection significantly inhibited in vivo recovery of rod photoresponses and the rate of recovery of functional rhodopsin photopigment. Assays for visual cycle enzyme activities indicated that PBN inhibited one of the key enzymes of the visual cycle, RPE65, with an IC(50) = 0.1 mm. The inhibition type for RPE65 was found to be uncompetitive with K(i) = 53 µm. PBN had no effect on the activity of other visual cycle enzymes, lecithin retinol acyltransferase and retinol dehydrogenases. Interestingly, a more soluble form of PBN, N-tert-butyl-α-(2-sulfophenyl) nitrone, which has similar free radical trapping activity, did not protect the retina or inhibit RPE65 activity, providing some insight into the mechanism of PBN specificity and action. Slowing down the visual cycle is considered a treatment strategy for retinal diseases, such as Stargardt disease and dry age-related macular degeneration, in which toxic byproducts of the visual cycle accumulate in retinal cells. Thus, PBN inhibition of RPE65 catalytic action may provide therapeutic benefit for such retinal diseases.


Subject(s)
Carrier Proteins/metabolism , Cyclic N-Oxides/pharmacology , Eye Proteins/metabolism , Light/adverse effects , Neuroprotective Agents/pharmacology , Retinal Degeneration , Retinal Rod Photoreceptor Cells/enzymology , Rhodopsin/metabolism , cis-trans-Isomerases/metabolism , Acyltransferases/metabolism , Alcohol Oxidoreductases/metabolism , Animals , Rats , Rats, Sprague-Dawley , Retinal Degeneration/enzymology , Retinal Degeneration/prevention & control
18.
Free Radic Res ; 45(10): 1162-72, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21756051

ABSTRACT

OBJECTIVE: Hair cell death caused by acute acoustic trauma (AAT) reaches a secondary maximum at 7-10 days after noise exposure due to a second oxidative stress. Therefore, this study tested the effects of a combination of hydroxylated alpha-phenyl-tert-butylnitrone (4-OHPBN), N-acetyl-L-cysteine (NAC) and acetyl-L-carnitine (ALCAR) on AAT when the duration of treatment was extended over the period of 7-10 days after noise exposure as well as when the initial treatment was delayed 24 to 48 h after noise exposure. METHODS: Thirty chinchilla were exposed to a 105 dB octave-band noise centred at 4 kHz for 6 h and received the following treatments: (1) noise + saline (2-5) 4-OHPBN (20 mg/kg) + NAC (50 mg/kg) + ALCAR (20 mg/kg) intraperitoneally injected beginning 24 or 48 h after noise exposure twice daily for the next 2, 8 or 9 days. Auditory brainstem response (ABR) threshold shifts, outer hair cell (OHC) counts and organ of Corti immunohistochemistry were analyzed. RESULTS: The combination administration decreased ABR threshold shifts, inhibited OHC loss and reduced 4-hydroxynonenal (4-HNE) immunostaining. Significant decreases in the threshold shifts and reduction in OHC loss were observed with a shorter delay before starting treatment (24 h) and longer duration (9 days) treatment. CONCLUSIONS: These results demonstrate that the administration of antioxidant drugs extended up to 10 days after noise exposure can effectively treat AAT in a chinchilla model. This may provide significant and potentially clinically important information about the effective therapeutic window for AAT treatment.


Subject(s)
Antioxidants/administration & dosage , Hearing Loss, Noise-Induced/drug therapy , Acoustic Stimulation , Animals , Chinchilla , Drug Administration Schedule , Evoked Potentials, Auditory, Brain Stem/drug effects , Female , Hair Cells, Auditory, Outer/drug effects , Hair Cells, Auditory, Outer/metabolism , Hair Cells, Auditory, Outer/pathology , Hearing Loss, Noise-Induced/metabolism , Hearing Loss, Noise-Induced/pathology , Immunohistochemistry , Noise/adverse effects , Oxidative Stress/physiology
19.
Anticancer Agents Med Chem ; 11(4): 373-9, 2011 May 01.
Article in English | MEDLINE | ID: mdl-21651461

ABSTRACT

The nitrone compound PBN, α-phenyl-tert-butylnitrone, and closely related nitrones have anti-cancer activity in several experimental cancer models. The three experimental models most extensively studied include A) the rat choline deficiency liver cancer model, B) the rat C6 glioma model and C) the mouse APC(Min/+) colon cancer model. The two PBN-nitrones mostly studied are PBN and a PBN derivative 2,4-disulfophenyl-tert-butylnitrone, referred as OKN-007. OKN-007 is a proprietary compound that has had extensive commercial development (designated as NXY-059) for another indication, acute ischemic stroke, and after extensive clinical studies was shown to lack efficacy for this indication but was shown to be very safe for human use. This compound administered orally in the rat glioma model has potent activity in treating fully formed gliomas. In this report observations made on the PBN-nitrones in experimental cancer models will be summarized. In addition the experimental results will be discussed in the general framework of the properties of the compounds with a view to try to understand the mechanistic basis of how the PBN-nitrones act as anti-cancer agents. Possible mechanisms related to the suppression of NO production, S-nitrosylation of critical proteins and inhibition of NF-κB activation are discussed.


Subject(s)
Antineoplastic Agents/pharmacology , Neoplasms/drug therapy , Nitrogen Oxides/pharmacology , Animals , Antineoplastic Agents/therapeutic use , Benzenesulfonates/pharmacology , Benzenesulfonates/therapeutic use , Cyclic N-Oxides/pharmacology , Cyclic N-Oxides/therapeutic use , Humans , Imines/pharmacology , Imines/therapeutic use , Nitrogen Oxides/therapeutic use
20.
Free Radic Biol Med ; 51(2): 490-502, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21600283

ABSTRACT

Gliomas, the most common primary brain tumors in adults, have a poor outcome. PBN (α-phenyl-tert-butylnitrone) and OKN007 (2,4-disulfophenyl-PBN) are nitrones that have demonstrated beneficial effects in many aging diseases. In this study, we evaluated the anti-tumor effects of PBN and OKN007 in several rodent glioma models (C6, RG2, and GL261) by assessing metabolite alterations with magnetic resonance spectroscopy (MRS). PBN or OKN007 was administered in drinking water before or after tumor formation. MR imaging and single-voxel point-resolved spectroscopy were done to assess tumor morphology and metabolites, after therapy. Major metabolite ratios (choline, N-acetylaspartate, and lipid (methylene or methyl), all compared to creatine), as well as quantification of individual metabolite concentrations, were assessed. Nitrones induced tumor metabolism changes that resulted in restoring major metabolite ratios close to their normal levels, in the glioma regression phase. Nitrone treatment decreased the lipid (methylene)-to-creatine ratio, as well as the estimated concentration of lipid (methylene) significantly. Alterations in lipids can be a useful marker for the evaluation of the efficacy associated with treatment and were found in this study to be related to the reduction of necrosis, but not apoptosis. OKN007 was more effective than PBN when administered after tumor formation in the C6 glioma model. In conclusion, (1)H MRS and conventional MRI are useful methods to assess and follow the response of varied glioma models to anti-tumor treatments.


Subject(s)
Brain Neoplasms/metabolism , Glioma/metabolism , Magnetic Resonance Spectroscopy/methods , Animals , Brain Neoplasms/pathology , Cell Division , Cell Line, Tumor , Glioma/pathology , Protons , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...