Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 14(9): 2387-2394, 2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36848633

ABSTRACT

Singlet fission proceeds through a manifold of triplet-pair states that are exceedingly difficult to distinguish spectroscopically. Here, we introduce a new implementation of photoinduced-absorption-detected magnetic resonance (PADMR) and use it to understand the excited-state absorption spectrum of a tri-2-pentylsilylethynyl pentadithiophene (TSPS-PDT) film. These experiments allow us to directly correlate magnetic transitions driven by RF with electronic transitions in the visible and near-infrared spectrum with high sensitivity. We find that the new near-infrared excited-state transitions that arise in thin films of TSPS-PDT are correlated with the magnetic transitions of T1, not 5TT. Thus, we assign these features to the excited-state absorption of 1TT, which is depleted when T1 states are driven to a spin configuration that forbids subsequent fusion. These results clarify the disputed origin of triplet-associated near-infrared absorption features in singlet-fission materials and demonstrate an incisive general purpose tool for studying the evolution of high-spin excited states.

2.
Proc Natl Acad Sci U S A ; 119(29): e2201879119, 2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35858318

ABSTRACT

The photo-driven process of singlet fission generates coupled triplet pairs (TT) with fundamentally intriguing and potentially useful properties. The quintet 5TT0 sublevel is particularly interesting for quantum information because it is highly entangled, is addressable with microwave pulses, and could be detected using optical techniques. Previous theoretical work on a model Hamiltonian and nonadiabatic transition theory, called the JDE model, has determined that this sublevel can be selectively populated if certain conditions are met. Among the most challenging, the molecules within the dimer undergoing singlet fission must have their principal magnetic axes parallel to one another and to an applied Zeeman field. Here, we present time-resolved electron paramagnetic resonance (TR-EPR) spectroscopy of a single crystal sample of a tetracenethiophene compound featuring arrays of dimers aligned in this manner, which were mounted so that the orientation of the field relative to the molecular axes could be controlled. The observed spin sublevel populations in the paired TT and unpaired (T+T) triplets are consistent with predictions from the JDE model, including preferential 5TT0 formation at z ‖ B0, with one caveat-two 5TT spin sublevels have little to no population. This may be due to crossings between the 5TT and 3TT manifolds in the field range investigated by TR-EPR, consistent with the intertriplet exchange energy determined by monitoring photoluminescence at varying magnetic fields.

3.
Sci Adv ; 3(6): e1602754, 2017 06.
Article in English | MEDLINE | ID: mdl-28630910

ABSTRACT

The key to the development of advanced materials is to understand their electronic structure-property relationship. Utilization of this understanding to design new electronic materials with desired properties led to modern epitaxial growth approaches for synthesizing artificial lattices, which for almost half a century have become the mainstay of electronic and photonic technologies. In contrast to previous scalar modulation approaches, we now study synthetic crystal lattices that have a tensor artificial modulation and develop a theory for photons and conduction band states in these lattices in a regime with an unusual departure from the familiar consequences of translational symmetry and Bloch's theorem. This study reveals that a nonmagnetic crystal lattice modulated by a purely geometrical orientational superlattice potential can lead to localized states or to spiral states for electrons and photons, as well as weakly or strongly localized states that could be used to markedly slow down the propagation of light and for optical energy storage applications.

4.
Opt Lett ; 42(6): 1165-1168, 2017 Mar 15.
Article in English | MEDLINE | ID: mdl-28295074

ABSTRACT

We demonstrate the condensation of microcavity polaritons with a very sharp threshold occurring at a two orders of magnitude pump intensity lower than previous demonstrations of condensation. The long cavity lifetime and trapping and pumping geometries are crucial to the realization of this low threshold. Polariton condensation, or "polariton lasing" has long been proposed as a promising source of coherent light at a lower threshold than traditional lasing, and these results indicate some considerations for optimizing designs for lower thresholds.

5.
Nat Commun ; 6: 7136, 2015 May 28.
Article in English | MEDLINE | ID: mdl-26017853

ABSTRACT

Semiconductor strain engineering has become a critical feature of high-performance electronics because of the significant device performance enhancements that it enables. These improvements, which emerge from strain-induced modifications to the electronic band structure, necessitate new ultra-sensitive tools to probe the strain in semiconductors. Here, we demonstrate that minute amounts of strain in thin semiconductor epilayers can be measured using electronic Raman scattering. We applied this strain measurement technique to two different semiconductor alloy systems using coherently strained epitaxial thin films specifically designed to produce lattice-mismatch strains as small as 10(-4). Comparing our strain sensitivity and signal strength in Al(x)Ga(1-x)As with those obtained using the industry-standard technique of phonon Raman scattering, we found that there was a sensitivity improvement of 200-fold and a signal enhancement of 4 × 10(3), thus obviating key constraints in semiconductor strain metrology.

SELECTION OF CITATIONS
SEARCH DETAIL
...