Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 1756, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38409277

ABSTRACT

Structural studies of translating ribosomes traditionally rely on in vitro assembly and stalling of ribosomes in defined states. To comprehensively visualize bacterial translation, we reactivated ex vivo-derived E. coli polysomes in the PURE in vitro translation system and analyzed the actively elongating polysomes by cryo-EM. We find that 31% of 70S ribosomes assemble into disome complexes that represent eight distinct functional states including decoding and termination intermediates, and a pre-nucleophilic attack state. The functional diversity of disome complexes together with RNase digest experiments suggests that paused disome complexes transiently form during ongoing elongation. Structural analysis revealed five disome interfaces between leading and queueing ribosomes that undergo rearrangements as the leading ribosome traverses through the elongation cycle. Our findings reveal at the molecular level how bL9's CTD obstructs the factor binding site of queueing ribosomes to thwart harmful collisions and illustrate how translation dynamics reshape inter-ribosomal contacts.


Subject(s)
Escherichia coli , Ribosomes , Escherichia coli/genetics , Escherichia coli/chemistry , Cryoelectron Microscopy , Ribosomes/metabolism , Protein Biosynthesis , Polyribosomes/metabolism
2.
Dev Cell ; 57(16): 2009-2025.e6, 2022 08 22.
Article in English | MEDLINE | ID: mdl-35901789

ABSTRACT

Under adverse conditions such as shade or elevated temperatures, cotyledon expansion is reduced and hypocotyl growth is promoted to optimize plant architecture. The mechanisms underlying the repression of cotyledon cell expansion remain unknown. Here, we report that the nuclear abundance of the BES1 transcription factor decreased in the cotyledons and increased in the hypocotyl in Arabidopsis thaliana under shade or warmth. Brassinosteroid levels did not follow the same trend. PIF4 and COP1 increased their nuclear abundance in both organs under shade or warmth. PIF4 directly bound the BES1 promoter to enhance its activity but indirectly reduced BES1 expression. COP1 physically interacted with the BES1 protein, promoting its proteasome degradation in the cotyledons. COP1 had the opposite effect in the hypocotyl, demonstrating organ-specific regulatory networks. Our work indicates that shade or warmth reduces BES1 activity by transcriptional and post-translational regulation to inhibit cotyledon cell expansion.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Brassinosteroids/metabolism , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Plant , Hypocotyl/metabolism
3.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Article in English | MEDLINE | ID: mdl-35042777

ABSTRACT

Mitochondrial ribosomes (mitoribosomes) play a central role in synthesizing mitochondrial inner membrane proteins responsible for oxidative phosphorylation. Although mitoribosomes from different organisms exhibit considerable structural variations, recent insights into mitoribosome assembly suggest that mitoribosome maturation follows common principles and involves a number of conserved assembly factors. To investigate the steps involved in the assembly of the mitoribosomal small subunit (mt-SSU) we determined the cryoelectron microscopy structures of middle and late assembly intermediates of the Trypanosoma brucei mitochondrial small subunit (mt-SSU) at 3.6- and 3.7-Å resolution, respectively. We identified five additional assembly factors that together with the mitochondrial initiation factor 2 (mt-IF-2) specifically interact with functionally important regions of the rRNA, including the decoding center, thereby preventing premature mRNA or large subunit binding. Structural comparison of assembly intermediates with mature mt-SSU combined with RNAi experiments suggests a noncanonical role of mt-IF-2 and a stepwise assembly process, where modular exchange of ribosomal proteins and assembly factors together with mt-IF-2 ensure proper 9S rRNA folding and protein maturation during the final steps of assembly.


Subject(s)
Mitochondrial Proteins/chemistry , Mitochondrial Ribosomes/chemistry , Oxidative Phosphorylation , RNA, Ribosomal/chemistry , Ribosomal Proteins/chemistry , Ribosome Subunits/chemistry , Cell Line , Cryoelectron Microscopy , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Mitochondrial Ribosomes/metabolism , Models, Molecular , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Ribosome Subunits/genetics , Ribosome Subunits/metabolism , Trypanosoma brucei brucei/genetics , Trypanosoma brucei brucei/metabolism
4.
Mol Cell ; 81(6): 1200-1215.e9, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33639093

ABSTRACT

Ribosome biogenesis is a fundamental multi-step cellular process that culminates in the formation of ribosomal subunits, whose production and modification are regulated by numerous biogenesis factors. In this study, we analyze physiologic prokaryotic ribosome biogenesis by isolating bona fide pre-50S subunits from an Escherichia coli strain with the biogenesis factor ObgE, affinity tagged at its native gene locus. Our integrative structural approach reveals a network of interacting biogenesis factors consisting of YjgA, RluD, RsfS, and ObgE on the immature pre-50S subunit. In addition, our study provides mechanistic insight into how the GTPase ObgE, in concert with other biogenesis factors, facilitates the maturation of the 50S functional core and reveals both conserved and divergent evolutionary features of ribosome biogenesis between prokaryotes and eukaryotes.


Subject(s)
Escherichia coli Proteins , Evolution, Molecular , Genetic Loci , Hydro-Lyases , Monomeric GTP-Binding Proteins , Ribosome Subunits, Large, Bacterial , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Hydro-Lyases/chemistry , Hydro-Lyases/genetics , Hydro-Lyases/metabolism , Monomeric GTP-Binding Proteins/chemistry , Monomeric GTP-Binding Proteins/genetics , Monomeric GTP-Binding Proteins/metabolism , Ribosome Subunits, Large, Bacterial/chemistry , Ribosome Subunits, Large, Bacterial/genetics , Ribosome Subunits, Large, Bacterial/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...