Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cell Res ; 57: 102573, 2021 Oct 16.
Article in English | MEDLINE | ID: mdl-34688127

ABSTRACT

Autosomal recessive polycystic kidney disease (ARPKD) is a severe pediatric kidney disorder primarily caused by mutations in the fibrocystin-encoding PKHD1 gene. It is characterized by the progressive development of cysts, eventually leading to renal failure. In order to create patient specific iPSCs, peripheral blood mononuclear cells (PBMCs) from a female patient carrying a homozygous PKHD1 mutation (c.8285A>T(;)(8285A>T)) were reprogrammed using the non-integral Cytotune®-iPS 2.0 Sendai Reprogramming Kit (Invitrogen). Morphology and karyotype of the cells are normal. Pluripotency hallmarks as well as the potential to spontaneously differentiate into all three germ layers were shown by immunofluorescence staining and RT-PCR.

2.
Stem Cell Res ; 57: 102579, 2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34695767

ABSTRACT

Mutations in the PKHD1 gene, encoding for the ciliary protein fibrocystin, play a major role in the cystogenesis in autosomal recessive polycystic kidney disease (ARPKD), a severe pediatric kidney disorder. Peripheral blood mononuclear cells (PBMCs) from a female patient carrying a compound heterozygous PKHD1 mutation (c.6331A>G(;)7717C>T) were obtained and reprogrammed by viral transduction using the Cytotune®-iPS 2.0 Sendai Reprogramming Kit (Invitrogen). The resulting iPSCs display a normal karyotype, express pluripotency markers, and show the potential for spontaneous differentiation in vitro, offering a useful tool for studying ARPKD pathomechanisms and drug screening.

SELECTION OF CITATIONS
SEARCH DETAIL
...