Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Proc Biol Sci ; 287(1938): 20201341, 2020 11 11.
Article in English | MEDLINE | ID: mdl-33143585

ABSTRACT

Corallivorous crown-of-thorns starfishes (Acanthaster spp.) can decimate coral assemblages on Indo-Pacific coral reefs during population outbreaks. While initial drivers of population irruptions leading to outbreaks remain largely unknown, subsequent dispersal of outbreaks appears coincident with depletion of coral prey. Here, we used in situ time-lapse photography to characterize movement of the Pacific crown-of-thorns starfish (Acanthaster cf. solaris) in the northern and southern Great Barrier Reef in 2015, during the fourth recorded population outbreak of the starfish, but prior to widespread coral bleaching. Daily tracking of 58 individuals over a total of 1117 h revealed all starfish to move a minimum of 0.52 m, with around half of all tracked starfish showing negligible daily displacement (less than 1 m day-1), ranging up to a maximum of 19 m day-1. Movement was primarily nocturnal and daily displacement varied spatially with variation in local availability of Acropora spp., which is the preferred coral prey. Two distinct behavioural modes emerged: (i) homing movement, whereby tracked paths (as tested against a random-walk-model) involved short displacement distances following distinct 'outward' movement to Acropora prey (typically displaying 'feeding scars') and 'homebound' movement to nearby shelter; versus (ii) roaming movement, whereby individuals showed directional movement beyond initial tracking positions without return. Logistic modelling revealed more than half of all tracked starfish demonstrated homing when local abundance (percentage cover) of preferred Acropora coral prey was greater than 33%. Our results reveal facultative homing by Acanthaster with the prey-dependent behavioural switch to roaming forays providing a mechanism explaining localized aggregations and diffusion of these population irruptions as prey is locally depleted.


Subject(s)
Homing Behavior , Starfish/physiology , Animals , Anthozoa , Coral Reefs , Movement
2.
Oecologia ; 190(3): 665-677, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31250188

ABSTRACT

Sea urchins have the capacity to destructively overgraze kelp beds and cause a wholesale shift to an alternative and stable 'urchin barren' reef state. However, destructive grazing appears labile and contingent on behavioural shift. Changes in supply of allochthonous 'drift-kelp' food are hypothesised as a trigger of change in urchin grazing behaviour, yet field tests are lacking. Here we conduct a suite of in situ behavioural surveys and manipulative experiments within kelp beds and on urchin barrens to examine foraging movements and evidence for a behavioural switch to an 'overgrazing mode' by the Australian urchin Heliocidaris erythrogramma (Echinometridae). Tracking urchins using time-lapse photography revealed urchin foraging to conform to a random walk model within kelp beds and on barrens. However, many individuals tended towards local movement within proximal crevices and movement was reduced in kelp beds compared to barrens. Directional movement of urchins toward newly available kelp was experimentally inducible, consistent with locally observed 'mobile-feeding-fronts' that develop at barrens-kelp interfaces. Habitat-specific feeding modes were also evidenced by herbivory assays which revealed urchin grazing rates to be high on both drift-kelp and standing kelp on barren grounds, while drift-kelp but not standing kelp was consumed at high rates within kelp beds. Time-lapse tracking of urchin foraging before/after addition of drift-kelp revealed a reduction in foraging across the reef surface after drift-kelp capture. Collectively, results indicate that the availability of drift-kelp is a pivotal trigger in determining urchin feeding modes which thus mediates the shift between alternative stable states for rocky reef ecosystems.


Subject(s)
Kelp , Animals , Australia , Ecosystem , Food Chain , Sea Urchins
SELECTION OF CITATIONS
SEARCH DETAIL