Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Anim Genet ; 50(6): 778-782, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31571241

ABSTRACT

The Valais Red sheep breed is a local breed of the Swiss canton Valais. Although the breed is characterised by its brown colour, black animals occasionally occur and the objective of this study was to identify the causative genetic variants responsible for the obvious difference. A GWAS using high-density SNP data to compare 51 brown and 38 black sheep showed a strong signal on chromosome 2 at the TYRP1 locus. Haplotype analyses revealed three different brown-associated alleles. The WGS of three sheep revealed four protein-changing variants within the TYRP1 gene. Three of these variants were associated with the recessively inherited brown coat colour. This includes the known missense variant TYRP1:c.869G>T designated as bS oay and two novel loss-of-function variants. We propose to designate the frame-shift variant TYRP1:c.86_87delGA as bVS 1 and the nonsense variant TYRP1:c.1066C>T as bVS 2 . Interestingly, the bVS 1 allele occurs only in local breeds of Switzerland whereas the bVS 2 allele seems to be more widespread across Europe.


Subject(s)
Oxidoreductases/genetics , Pigmentation , Sheep, Domestic/genetics , Animals , DNA Mutational Analysis , Genome-Wide Association Study , Sheep, Domestic/classification , Sheep, Domestic/physiology , Switzerland
2.
Anim Genet ; 50(5): 512-525, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31365135

ABSTRACT

A dataset consisting of 787 animals with high-density SNP chip genotypes (346 774 SNPs) and 939 animals with medium-density SNP chip genotypes (33 828 SNPs) from eight indigenous Swiss sheep breeds was analyzed to characterize population structure, quantify genomic inbreeding based on runs of homozygosity and identify selection signatures. In concordance with the recent known history of these breeds, the highest genetic diversity was observed in Engadine Red sheep and the lowest in Valais Blacknose sheep. Correlation between FPED and FROH was around 0.50 and thereby lower than that found in similar studies in cattle. Mean FROH estimates from medium-density data and HD data were highly correlated (0.95). Signatures of selection and candidate gene analysis revealed that the most prominent signatures of selection were found in the proximity of genes associated with body size (NCAPG, LCORL, LAP3, SPP1, PLAG1, ALOX12, TP53), litter size (SPP1), milk production (ABCG2, SPP1), coat color (KIT, ASIP, TBX3) and horn status (RXFP2). For the Valais Blacknose sheep, the private signatures in proximity of genes/QTL influencing body size, coat color and fatty acid composition were confirmed based on runs of homozygosity analysis. These private signatures underline the genetic uniqueness of the Valais Blacknose sheep breed. In conclusion, we identified differences in the genetic make-up of Swiss sheep breeds, and we present relevant candidate genes responsible for breed differentiation in locally adapted breeds.


Subject(s)
Sheep, Domestic/genetics , Animals , Breeding , Genetics, Population , Homozygote , Polymorphism, Single Nucleotide , Sheep, Domestic/classification , Switzerland
3.
Anim Genet ; 50(5): 423-429, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31294880

ABSTRACT

A specific white spotting phenotype, termed finching or line-backed spotting, is known for all Pinzgauer cattle and occurs occasionally in Tux-Zillertaler cattle, two Austrian breeds. The so-called Pinzgauer spotting is inherited as an autosomal incompletely dominant trait. A genome-wide association study using 27 white spotted and 16 solid-coloured Tux-Zillertaler cattle, based on 777k SNP data, revealed a strong signal on chromosome 6 at the KIT locus. Haplotype analyses defined a critical interval of 122 kb downstream of the KIT coding region. Whole-genome sequencing of a Pinzgauer cattle and comparison to 338 control genomes revealed a complex structural variant consisting of a 9.4-kb deletion and an inversely inserted duplication of 1.5 kb fused to a 310-kb duplicated segment from chromosome 4. A diagnostic PCR was developed for straightforward genotyping of carriers for this structural variant (KITPINZ ) and confirmed that the variant allele was present in all Pinzgauer and most of the white spotted Tux-Zillertaler cattle. In addition, we detected the variant in all Slovenian Cika, British Gloucester and Spanish Berrenda en negro cattle with similar spotting patterns. Interestingly, the KITPINZ variant occurs in some white spotted animals of the Swiss breeds Evolèner and Eringer. The introgression of the KITPINZ variant confirms admixture and the reported historical relationship of these short-headed breeds with Austrian Tux-Zillertaler and suggests a mutation event, occurring before breed formation.


Subject(s)
Cattle/genetics , Chromosomes, Mammalian , Pigmentation , Proto-Oncogene Proteins c-kit/genetics , Animals , Cattle/classification , Chromosome Duplication , Genome-Wide Association Study , Genomic Structural Variation , Polymorphism, Single Nucleotide
4.
Anim Genet ; 49(4): 334-336, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29774580

ABSTRACT

The crest in chicken consists of elongated and upraised feathers, as seen in various breeds such as the Silkie chicken. Recently, the still unknown causative mutation for the crest phenotype was assigned to chromosome 33 and an ectopic expression of HOXC8 was shown. The aim this study was to evaluate whether the crest phenotype in a local Swiss chicken breed, the Appenzeller Spitzhaubenhuhn, is associated with HOXC8. Three previously reported crest-associated flanking markers at the HOXC8 locus were genotyped in cohorts of this breed and two other local breeds without the crest phenotype. For the Appenzeller Spitzhaubenhuhn chicken showing the crest phenotype, no clear association of the reported markers could be revealed. Furthermore, the two exons of HOXC8 were sequenced in crested chicken of the Appenzeller Spitzhaubenhuhn and Silkie breeds and revealed no evidence of polymorphisms within the coding region of HOXC8. Therefore, the molecular genetic etiology for the crest phenotype in the investigated breeds remains unclear.


Subject(s)
Breeding , Chickens/genetics , Feathers , Homeodomain Proteins/genetics , Animals , Exons , Genetic Markers , Genotype , Phenotype , Polymorphism, Single Nucleotide , Switzerland
5.
Anim Genet ; 47(6): 727-739, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27436146

ABSTRACT

We used genotype data from the caprine 50k Illumina BeadChip for the assessment of genetic diversity within and between 10 local Swiss goat breeds. Three different cluster methods allowed the goat samples to be assigned to the respective breed groups, whilst the samples of Nera Verzasca and Tessin Grey goats could not be differentiated from each other. The results of the different genetic diversity measures show that Appenzell, Toggenburg, Valais and Booted goats should be prioritized in future conservation activities. Furthermore, we examined runs of homozygosity (ROH) and compared genomic inbreeding coefficients based on ROH (FROH ) with pedigree-based inbreeding coefficients (FPED ). The linear relationship between FROH and FPED was confirmed for goats by including samples from the three main breeds (Saanen, Chamois and Toggenburg goats). FROH appears to be a suitable measure for describing levels of inbreeding in goat breeds with missing pedigree information. Finally, we derived selection signatures between the breeds. We report a total of 384 putative selection signals. The 25 most significant windows contained genes known for traits such as: coat color variation (MITF, KIT, ASIP), growth (IGF2, IGF2R, HRAS, FGFR3) and milk composition (PITX2). Several other putative genes involved in the formation of populations, which might have been selected for adaptation to the alpine environment, are highlighted. The results provide a contemporary background for the management of genetic diversity in local Swiss goat breeds.


Subject(s)
Breeding , Genetic Variation , Genetics, Population , Goats/genetics , Selection, Genetic , Animals , Genotype , Homozygote , Inbreeding , Pedigree , Switzerland
6.
Anim Genet ; 47(3): 370-2, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26857482

ABSTRACT

Shetland ponies were selected for numerous traits including small stature, strength, hardiness and longevity. Despite the different selection criteria, Shetland ponies are well known for their small stature. We performed a selection signature analysis including genome-wide SNPs of 75 Shetland ponies and 76 large-sized horses. Based upon this dataset, we identified a selection signature on equine chromosome (ECA) 1 between 103.8 Mb and 108.5 Mb. A total of 33 annotated genes are located within this interval including the IGF1R gene at 104.2 Mb and the ADAMTS17 gene at 105.4 Mb. These two genes are well known to have a major impact on body height in numerous species including humans. Homozygosity mapping in the Shetland ponies identified a region with increased homozygosity between 107.4 Mb and 108.5 Mb. None of the annotated genes in this region have so far been associated with height. Thus, we cannot exclude the possibility that the identified selection signature on ECA1 is associated with some trait other than height, for which Shetland ponies were selected.


Subject(s)
Horses/genetics , Polymorphism, Single Nucleotide , Selection, Genetic , ADAMTS Proteins/genetics , Animals , Body Height , Breeding , Genotype , Homozygote , Humans , Receptors, Somatomedin/genetics
7.
Anim Genet ; 46(3): 316-20, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25736034

ABSTRACT

The presence of congenital appendages (wattles) on the throat of goats is supposed to be under genetic control with a dominant mode of inheritance. Wattles contain a cartilaginous core covered with normal skin resembling early stages of extremities. To map the dominant caprine wattles (W) locus, we collected samples of 174 goats with wattles and 167 goats without wattles from nine different Swiss goat breeds. The samples were genotyped with the 53k goat SNP chip for a subsequent genome-wide association study. We obtained a single strong association signal on chromosome 10 in a region containing functional candidate genes for limb development and outgrowth. We sequenced the whole genomes of an informative family trio containing an offspring without wattles and its heterozygous parents with wattles. In the associated goat chromosome 10 region, a total of 1055 SNPs and short indels perfectly co-segregate with the W allele. None of the variants were perfectly associated with the phenotype after analyzing the genome sequences of eight additional goats. We speculate that the causative mutation is located in one of the numerous gaps in the current version of the goat reference sequence and/or represents a larger structural variant which influences the expression of the FMN1 and/or GREM1 genes. Also, we cannot rule out possible genetic or allelic heterogeneity. Our genetic findings support earlier assumptions that wattles are rudimentary developed extremities.


Subject(s)
Fetal Proteins/genetics , Goats/anatomy & histology , Goats/genetics , Intercellular Signaling Peptides and Proteins/genetics , Microfilament Proteins/genetics , Nuclear Proteins/genetics , Pharynx/anatomy & histology , Alleles , Animals , Formins , Genetic Association Studies , Polymorphism, Single Nucleotide
8.
J Anim Breed Genet ; 128(5): 394-406, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21906185

ABSTRACT

The Franches-Montagnes is an indigenous Swiss horse breed, with approximately 2500 foalings per year. The stud book is closed, and no introgression from other horse breeds was conducted since 1998. Since 2006, breeding values for 43 different traits (conformation, performance and coat colour) are estimated with a best linear unbiased prediction (BLUP) multiple trait animal model. In this study, we evaluated the genetic diversity for the breeding population, considering the years from 2003 to 2008. Only horses with at least one progeny during that time span were included. Results were obtained based on pedigree information as well as from molecular markers. A series of software packages were screened to combine best the best linear unbiased prediction (BLUP) methodology with optimal genetic contribution theory. We looked for stallions with highest breeding values and lowest average relationship to the dam population. Breeding with such stallions is expected to lead to a selection gain, while lowering the future increase in inbreeding within the breed.


Subject(s)
Animal Husbandry/methods , Breeding , Genetic Variation , Horses/genetics , Inbreeding , Animals , Breeding/methods , Female , Genetic Markers , Genotype , Male , Pedigree , Polymorphism, Single Nucleotide , Software/standards
9.
J Anim Breed Genet ; 127(5): 339-47, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20831557

ABSTRACT

Effective population size is an important parameter for the assessment of genetic diversity within a livestock population and its development over time. If pedigree information is not available, linkage disequilibrium (LD) analysis might offer an alternative perspective for the estimation of effective population size. In this study, 128 individuals of the Swiss Eringer breed were genotyped using the Illumina BovineSNP50 beadchip. We set bin size at 50 kb for LD analysis, assuming that LD for proximal single nucleotide polymorphism (SNP)-pairs reflects distant breeding history while LD from distal SNP-pairs would reflect near history. Recombination rates varied among different regions of the genome. The use of physical distances as an approximation of genetic distances (e.g. setting 1 Mb = 0.01 Morgan) led to an upward bias in LD-based estimates of effective population size for generations beyond 50, while estimates for recent history were unaffected. Correction for restricted sample size did not substantially affect these results. LD-based actual effective population size was estimated in the range of 87-149, whereas pedigree-based effective population size resulted in 321 individuals. For conservation purposes, requiring knowledge of recent history (<50 generations), approximation assuming constant recombination rate seemed adequate.


Subject(s)
Breeding , Cattle/genetics , Linkage Disequilibrium , Polymorphism, Single Nucleotide , Animals , Female , Genotype , Male , Population Density , Recombination, Genetic
10.
J Anim Breed Genet ; 123(3): 159-71, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16706920

ABSTRACT

The epistatic kinship describes the probability that chromosomal segments of length x in Morgan are identical by descent. It is an extension from the single locus consideration of the kinship coefficient to chromosomal segments. The parameter reflects the number of meioses separating individuals or populations. Hence it is suggested as a measure to quantify the genetic distance of subpopulations that have been separated only few generations ago. Algorithms for the epistatic kinship and the extension of the rules to set up the rectangular relationship matrix are presented. The properties of the epistatic kinship based on pedigree information were investigated theoretically. Pedigree data are often missing for small livestock populations. Therefore, an approach to estimate epistatic kinship based on molecular marker data are suggested. For the epistatic kinship based on marker information haplotypes are relevant. An easy and fast method that derives haplotypes and the respective frequencies without pedigree information was derived based on sampled full-sib pairs. Different parameters of the sampling scheme were tested in a simulation study. The power of the method decreases with increasing segment length and with increasing number of segments genotyped. Further, it is shown that the efficiency of the approach is influenced by the number of animals genotyped and the polymorphism of the markers. It is discussed that the suggested method has a considerable potential to allow a phylogenetic differentiation between close populations, where small sample size can be balanced by the number, the length, and the degree of polymorphism of the chromosome segments considered.


Subject(s)
Animals, Domestic/genetics , Chromosomes/genetics , Genetic Variation/genetics , Haplotypes/genetics , Models, Genetic , Phylogeny , Algorithms , Animals , Computer Simulation , Genetic Markers/genetics , Inbreeding , Pedigree
SELECTION OF CITATIONS
SEARCH DETAIL
...