Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 6(1): 998, 2023 09 29.
Article in English | MEDLINE | ID: mdl-37775688

ABSTRACT

Here we demonstrate, in rodents, how the timing of feeding behaviour becomes disordered when circulating glucocorticoid rhythms are dissociated from lighting cues; a phenomenon most commonly associated with shift-work and transmeridian travel 'jetlag'. Adrenalectomized rats are infused with physiological patterns of corticosterone modelled on the endogenous adrenal secretory profile, either in-phase or out-of-phase with lighting cues. For the in-phase group, food intake is significantly greater during the rats' active period compared to their inactive period; a feeding pattern similar to adrenal-intact control rats. In contrast, the feeding pattern of the out-of-phase group is significantly dysregulated. Consistent with a direct hypothalamic modulation of feeding behaviour, this altered timing is accompanied by dysregulated timing of anorexigenic and orexigenic neuropeptide gene expression. For Neuropeptide Y (Npy), we report a glucocorticoid-dependent direct transcriptional regulation mechanism mediated by the glucocorticoid receptor (GR). Taken together, our data highlight the adverse behavioural outcomes that can arise when two circadian systems have anti-phasic cues, in this case impacting on the glucocorticoid-regulation of a process as fundamental to health as feeding behaviour. Our findings further highlight the need for development of rational approaches in the prevention of metabolic dysfunction in circadian-disrupting activities such as transmeridian travel and shift-work.


Subject(s)
Glucocorticoids , Neuropeptides , Rats , Animals , Hypothalamus/metabolism , Feeding Behavior , Neuropeptides/genetics , Neuropeptides/metabolism , Gene Expression
2.
Proc Natl Acad Sci U S A ; 120(15): e2211996120, 2023 04 11.
Article in English | MEDLINE | ID: mdl-37023133

ABSTRACT

Disrupted circadian activity is associated with many neuropsychiatric disorders. A major coordinator of circadian biological systems is adrenal glucocorticoid secretion which exhibits a pronounced preawakening peak that regulates metabolic, immune, and cardiovascular processes, as well as mood and cognitive function. Loss of this circadian rhythm during corticosteroid therapy is often associated with memory impairment. Surprisingly, the mechanisms that underlie this deficit are not understood. In this study, in rats, we report that circadian regulation of the hippocampal transcriptome integrates crucial functional networks that link corticosteroid-inducible gene regulation to synaptic plasticity processes via an intrahippocampal circadian transcriptional clock. Further, these circadian hippocampal functions were significantly impacted by corticosteroid treatment delivered in a 5-d oral dosing treatment protocol. Rhythmic expression of the hippocampal transcriptome, as well as the circadian regulation of synaptic plasticity, was misaligned with the natural light/dark circadian-entraining cues, resulting in memory impairment in hippocampal-dependent behavior. These findings provide mechanistic insights into how the transcriptional clock machinery within the hippocampus is influenced by corticosteroid exposure, leading to adverse effects on critical hippocampal functions, as well as identifying a molecular basis for memory deficits in patients treated with long-acting synthetic corticosteroids.


Subject(s)
Circadian Clocks , Hippocampus , Rats , Animals , Hippocampus/metabolism , Gene Expression Regulation , Circadian Rhythm/physiology , Adrenal Cortex Hormones/pharmacology , Memory Disorders/drug therapy , Memory Disorders/metabolism
3.
Oncogene ; 41(50): 5347-5360, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36344675

ABSTRACT

ARID1a (BAF250), a component of human SWI/SNF chromatin remodeling complexes, is frequently mutated across numerous cancers, and its loss of function has been putatively linked to glucocorticoid resistance. Here, we interrogate the impact of siRNA knockdown of ARID1a compared to a functional interference approach in the HeLa human cervical cancer cell line. We report that ARID1a knockdown resulted in a significant global decrease in chromatin accessibility in ATAC-Seq analysis, as well as affecting a subset of genome-wide GR binding sites determined by analyzing GR ChIP-Seq data. Interestingly, the specific effects on gene expression were limited to a relatively small subset of glucocorticoid-regulated genes, notably those involved in cell cycle regulation and DNA repair. The vast majority of glucocorticoid-regulated genes were largely unaffected by ARID1a knockdown or functional interference, consistent with a more specific role for ARID1a in glucocorticoid function than previously speculated. Using liquid chromatography-mass spectrometry, we have identified a chromatin-associated protein complex comprising GR, ARID1a, and several DNA damage repair proteins including P53 binding protein 1 (P53BP1), Poly(ADP-Ribose) Polymerase 1 (PARP1), DNA damage-binding protein 1 (DDB1), DNA mismatch repair protein MSH6 and splicing factor proline and glutamine-rich protein (SFPQ), as well as the histone acetyltransferase KAT7, an epigenetic regulator of steroid-dependent transcription, DNA damage repair and cell cycle regulation. Not only was this protein complex ablated with both ARID1a knockdown and functional interference, but spontaneously arising DNA damage was also found to accumulate in a manner consistent with impaired DNA damage repair mechanisms. Recovery from dexamethasone-dependent cell cycle arrest was also significantly impaired. Taken together, our data demonstrate that although glucocorticoids can still promote cell cycle arrest in the absence of ARID1a, the purpose of this arrest to allow time for DNA damage repair is hindered.


Subject(s)
DNA Repair , Nuclear Proteins , Receptors, Glucocorticoid , Tumor Suppressor p53-Binding Protein 1 , Humans , Cell Cycle , Cell Cycle Checkpoints , Cell Line, Tumor , Chromatin/genetics , DNA Damage , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Histone Acetyltransferases/metabolism , Nuclear Proteins/metabolism , Transcription Factors/genetics , Receptors, Glucocorticoid/metabolism , Tumor Suppressor p53-Binding Protein 1/metabolism
4.
PLoS Genet ; 17(8): e1009737, 2021 08.
Article in English | MEDLINE | ID: mdl-34375333

ABSTRACT

Ultradian glucocorticoid rhythms are highly conserved across mammalian species, however, their functional significance is not yet fully understood. Here we demonstrate that pulsatile corticosterone replacement in adrenalectomised rats induces a dynamic pattern of glucocorticoid receptor (GR) binding at ~3,000 genomic sites in liver at the pulse peak, subsequently not found during the pulse nadir. In contrast, constant corticosterone replacement induced prolonged binding at the majority of these sites. Additionally, each pattern further induced markedly different transcriptional responses. During pulsatile treatment, intragenic occupancy by active RNA polymerase II exhibited pulsatile dynamics with transient changes in enrichment, either decreased or increased depending on the gene, which mostly returned to baseline during the inter-pulse interval. In contrast, constant corticosterone exposure induced prolonged effects on RNA polymerase II occupancy at the majority of gene targets, thus acting as a sustained regulatory signal for both transactivation and repression of glucocorticoid target genes. The nett effect of these differences were consequently seen in the liver transcriptome as RNA-seq analysis indicated that despite the same overall amount of corticosterone infused, twice the number of transcripts were regulated by constant corticosterone infusion, when compared to pulsatile. Target genes that were found to be differentially regulated in a pattern-dependent manner were enriched in functional pathways including carbohydrate, cholesterol, glucose and fat metabolism as well as inflammation, suggesting a functional role for dysregulated glucocorticoid rhythms in the development of metabolic dysfunction.


Subject(s)
Corticosterone/pharmacology , Liver/pathology , Receptors, Glucocorticoid/metabolism , Animals , Gene Expression/genetics , Gene Expression Profiling/methods , Gene Expression Regulation/genetics , Glucocorticoids/metabolism , Liver/metabolism , Male , Periodicity , Protein Transport/genetics , RNA Polymerase II/genetics , RNA, Messenger/genetics , Rats , Rats, Sprague-Dawley , Receptors, Glucocorticoid/physiology , Transcriptional Activation/genetics , Transcriptome/genetics
5.
Ann Endocrinol (Paris) ; 79(3): 112-114, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29627070

ABSTRACT

Glucocorticoid (GC) hormones play significant roles within homeostasis and the chrono-dynamics of their regulatory role has become increasingly recognised within dysregulated GC pathology, particularly with metabolic phenotypes. Within this article, we will discuss the relevance of the ultradian homeostatic rhythm, how its dysregulation effects glucocorticoid receptor and RNA polymeraseII recruitment and may play a significant role within aberrant metabolic action.


Subject(s)
Glucocorticoids/metabolism , Metabolic Diseases/metabolism , Ultradian Rhythm/physiology , Animals , Humans , Hypothalamo-Hypophyseal System/physiology , Metabolic Diseases/physiopathology , Pituitary ACTH Hypersecretion/metabolism , Pituitary ACTH Hypersecretion/physiopathology , Pituitary-Adrenal System/physiology , Receptors, Glucocorticoid/metabolism
6.
Trends Endocrinol Metab ; 29(4): 204-207, 2018 04.
Article in English | MEDLINE | ID: mdl-29477282

ABSTRACT

In a recent study, Jubb et al. used 3D DNA FISH to assess glucocorticoid-induced 'chromatin decompaction' at multiple loci. Determinants of the specificity, speed, and duration of this phenomenon further enhance our understanding of how the glucocorticoid receptor (GR) dynamically alters chromatin accessibility during acute-phase transcriptional regulation and beyond.


Subject(s)
Chromatin , Receptors, Glucocorticoid , Glucocorticoids
7.
Mol Cell Endocrinol ; 439: 46-53, 2017 01 05.
Article in English | MEDLINE | ID: mdl-27769714

ABSTRACT

In this paper we report differential decoding of the ultradian corticosterone signal by glucocorticoid target tissues. Pulsatile corticosterone replacement in adrenalectomised rats resulted in different dynamics of Sgk1 mRNA production, with a distinct pulsatile mRNA induction profile observed in the pituitary in contrast to a non-pulsatile induction in the prefrontal cortex (PFC). We further report the first evidence for pulsatile transcriptional repression of a glucocorticoid-target gene in vivo, with pulsatile regulation of Pomc transcription in pituitary. We have explored a potential mechanism for differences in the induction dynamics of the same transcript (Sgk1) between the PFC and pituitary. Glucocorticoid receptor (GR) activation profiles were strikingly different in pituitary and prefrontal cortex, with a significantly greater dynamic range and shorter duration of GR activity detected in the pituitary, consistent with the more pronounced gene pulsing effect observed. In the prefrontal cortex, expression of Gilz mRNA was also non-pulsatile and exhibited a significantly delayed timecourse of increase and decrease when compared to Sgk1, additionally highlighting gene-specific regulatory dynamics during ultradian glucocorticoid treatment.


Subject(s)
Gene Expression Regulation/drug effects , Glucocorticoids/pharmacology , Organ Specificity/genetics , Ultradian Rhythm/genetics , Animals , Corticosterone/pharmacology , Down-Regulation/drug effects , Down-Regulation/genetics , Immediate-Early Proteins/genetics , Immediate-Early Proteins/metabolism , Male , Organ Specificity/drug effects , Pituitary Gland/drug effects , Pituitary Gland/metabolism , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Pro-Opiomelanocortin/genetics , Pro-Opiomelanocortin/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Sprague-Dawley , Receptors, Glucocorticoid/metabolism , Ultradian Rhythm/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...