Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Ecology ; 99(4): 858-865, 2018 04.
Article in English | MEDLINE | ID: mdl-29352480

ABSTRACT

Heterogeneity is increasingly recognized as a foundational characteristic of ecological systems. Under global change, understanding temporal community heterogeneity is necessary for predicting the stability of ecosystem functions and services. Indeed, spatial heterogeneity is commonly used in alternative stable state theory as a predictor of temporal heterogeneity and therefore an early indicator of regime shifts. To evaluate whether spatial heterogeneity in species composition is predictive of temporal heterogeneity in ecological communities, we analyzed 68 community data sets spanning freshwater and terrestrial systems where measures of species abundance were replicated over space and time. Of the 68 data sets, 55 (81%) had a weak to strongly positive relationship between spatial and temporal heterogeneity, while in the remaining communities the relationship was weak to strongly negative (19%). Based on a mixed model analysis, we found a significant but weak overall positive relationship between spatial and temporal heterogeneity across all data sets combined, and within aquatic and terrestrial data sets separately. In addition, lifespan and successional stage were negatively and positively related to temporal heterogeneity, respectively. We conclude that spatial heterogeneity may be a predictor of temporal heterogeneity in ecological communities, and that this relationship may be a general property of many terrestrial and aquatic communities.


Subject(s)
Ecosystem , Fresh Water , Biota
2.
Ecol Lett ; 21(1): 128-137, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29148170

ABSTRACT

Species extinctions from local communities negatively affect ecosystem functioning. Ecological mechanisms underlying these impacts are well studied, but the role of evolutionary processes is rarely assessed. Using a long-term field experiment, we tested whether natural selection in plant communities increased biodiversity effects on productivity. We re-assembled communities with 8-year co-selection history adjacent to communities with identical species composition but no history of co-selection ('naïve communities'). Monocultures, and in particular mixtures of two to four co-selected species, were more productive than their corresponding naïve communities over 4 years in soils with or without co-selected microbial communities. At the highest diversity level of eight plant species, no such differences were observed. Our findings suggest that plant community evolution can lead to rapid increases in ecosystem functioning at low diversity but may take longer at high diversity. This effect was not modified by treatments simulating co-evolutionary processes between plants and soil organisms.


Subject(s)
Biodiversity , Plants , Ecology , Ecosystem , Plant Development , Soil
3.
Proc Biol Sci ; 283(1844)2016 12 14.
Article in English | MEDLINE | ID: mdl-27928041

ABSTRACT

Biodiversity is inherently multidimensional, encompassing taxonomic, functional, phylogenetic, genetic, landscape and many other elements of variability of life on the Earth. However, this fundamental principle of multidimensionality is rarely applied in research aimed at understanding biodiversity's value to ecosystem functions and the services they provide. This oversight means that our current understanding of the ecological and environmental consequences of biodiversity loss is limited primarily to what unidimensional studies have revealed. To address this issue, we review the literature, develop a conceptual framework for multidimensional biodiversity research based on this review and provide a case study to explore the framework. Our case study specifically examines how herbivory by whitetail deer (Odocoileus virginianus) alters the multidimensional influence of biodiversity on understory plant cover at Black Rock Forest, New York. Using three biodiversity dimensions (taxonomic, functional and phylogenetic diversity) to explore our framework, we found that herbivory alters biodiversity's multidimensional influence on plant cover; an effect not observable through a unidimensional approach. Although our review, framework and case study illustrate the advantages of multidimensional over unidimensional approaches, they also illustrate the statistical and empirical challenges such work entails. Meeting these challenges, however, where data and resources permit, will be important if we are to better understand and manage the consequences we face as biodiversity continues to decline in the foreseeable future.


Subject(s)
Biodiversity , Deer , Herbivory , Plants/classification , Animals , Forests , New York , Phylogeny
4.
Ecology ; 97(4): 918-28, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27220208

ABSTRACT

Plant-plant and plant-soil interactions can help maintain plant diversity and ecosystem functions. Changes in these interactions may underlie experimentally observed increases in biodiversity effects over time via the selection of genotypes adapted to low or high plant diversity. Little is known, however, about such community-history effects and particularly the role of plant-soil interactions in this process. Soil-legacy effects may occur if co-evolved interactions with soil communities either positively or negatively modify plant biodiversity effects. We tested how plant selection and soil legacy influence biodiversity effects on productivity, and whether such effects increase the resistance of the communities to invasion by weeds. We used two plant selection treatments: parental plants growing in monoculture or in mixture over 8 yr in a grassland biodiversity experiment in the field, which we term monoculture types and mixture types. The two soil-legacy treatments used in this study were neutral soil inoculated with live or sterilized soil inocula collected from the same plots in the biodiversity experiment. For each of the four factorial combinations, seedlings of eight species were grown in monocultures or four-species mixtures in pots in an experimental garden over 15 weeks. Soil legacy (live inoculum) strongly increased biodiversity complementarity effects for communities of mixture types, and to a significantly weaker extent for communities of monoculture types. This may be attributed to negative plant-soil feedbacks suffered by mixture types in monocultures, whereas monoculture types had positive plant-soil feedbacks, in both monocultures and mixtures. Monocultures of mixture types were most strongly invaded by weeds, presumably due to increased pathogen susceptibility, reduced biomass, and altered plant-soil interactions of mixture types. These results show that biodiversity effects in experimental grassland communities can be modified by the evolution of positive vs. negative plant-soil feedbacks of plant monoculture vs. mixture types.


Subject(s)
Biodiversity , Gastropoda/physiology , Plants/classification , Soil/chemistry , Animals , Germany , Grassland , Models, Biological
5.
Ecology ; 97(4): 918-928, 2016 Apr.
Article in English | MEDLINE | ID: mdl-28792599

ABSTRACT

Plant-plant and plant-soil interactions can help maintain plant diversity and ecosystem functions. Changes in these interactions may underlie experimentally observed increases in biodiversity effects over time via the selection of genotypes adapted to low or high plant diversity. Little is known, however, about such community-history effects and particularly the role of plant-soil interactions in this process. Soil-legacy effects may occur if co-evolved interactions with soil communities either positively or negatively modify plant biodiversity effects. We tested how plant selection and soil legacy influence biodiversity effects on productivity, and whether such effects increase the resistance of the communities to invasion by weeds. We used two plant selection treatments: parental plants growing in monoculture or in mixture over 8 yr in a grassland biodiversity experiment in the field, which we term monoculture types and mixture types. The two soil-legacy treatments used in this study were neutral soil inoculated with live or sterilized soil inocula collected from the same plots in the biodiversity experiment. For each of the four factorial combinations, seedlings of eight species were grown in monocultures or four-species mixtures in pots in an experimental garden over 15 weeks. Soil legacy (live inoculum) strongly increased biodiversity complementarity effects for communities of mixture types, and to a significantly weaker extent for communities of monoculture types. This may be attributed to negative plant-soil feedbacks suffered by mixture types in monocultures, whereas monoculture types had positive plant-soil feedbacks, in both monocultures and mixtures. Monocultures of mixture types were most strongly invaded by weeds, presumably due to increased pathogen susceptibility, reduced biomass, and altered plant-soil interactions of mixture types. These results show that biodiversity effects in experimental grassland communities can be modified by the evolution of positive vs. negative plant-soil feedbacks of plant monoculture vs. mixture types.


Subject(s)
Biodiversity , Ecosystem , Plant Physiological Phenomena , Soil/chemistry , Biomass , Plants/classification
6.
Sci Rep ; 5: 14320, 2015 Sep 21.
Article in English | MEDLINE | ID: mdl-26388168

ABSTRACT

Limitation of disturbances, such as grazing and fire, is a key tool for nature reserve management and ecological restoration. While the role of these disturbances in shaping ecosystem structure and functioning has been intensively studied, less is known about the consequences of long-term prevention of grazing and fire. Based on a 31-year study, we show that relative biomass of the dominant grass, Leymus chinensis, of grasslands in northern China declined dramatically, but only after 21 years of exclusion of fire and grazing. However, aboveground net primary productivity (ANPP) did not decline accordingly due to compensatory responses of several subdominant grass species. The decline in dominance of L. chinensis was not related to gradually changing climate during the same period, whereas experimentally imposed litter removal (simulating fire), mowing (simulating grazing), fire and moderate grazing enhanced dominance of L. chinensis significantly. Thus, our findings show that disturbances can be critical to maintain the dominance of key grass species in semiarid grassland, but that the collapse of a dominant species does not necessarily result in significant change in ANPP if there are species in the community capable of compensating for loss of a dominant.


Subject(s)
Biota , Fires/prevention & control , Grassland , Poaceae , China , Herbivory , Population Dynamics
7.
PLoS One ; 10(5): e0126372, 2015.
Article in English | MEDLINE | ID: mdl-25946085

ABSTRACT

As CO2 concentrations continue to rise and drive global climate change, much effort has been put into estimating soil carbon (C) stocks and dynamics over time. However, the inconsistent methods employed by researchers hamper the comparability of such works, creating a pressing need to standardize the methods for soil organic C (SOC) quantification by the various methods. Here, we collected 712 soil samples from 36 sites of alpine grasslands on the Tibetan Plateau covering different soil depths and vegetation and soil types. We used an elemental analyzer for soil total C (STC) and an inorganic carbon analyzer for soil inorganic C (SIC), and then defined the difference between STC and SIC as SOCCNS. In addition, we employed the modified Walkley-Black (MWB) method, hereafter SOCMWB. Our results showed that there was a strong correlation between SOCCNS and SOCMWB across the data set, given the application of a correction factor of 1.103. Soil depth and soil type significantly influenced on the recovery, defined as the ratio of SOCMWB to SOCCNS, and the recovery was closely associated with soil carbonate content and pH value as well. The differences of recovery between alpine meadow and steppe were largely driven by soil pH. In addition, statistically, a relatively strong correlation between SOCCNS and STC was also found, suggesting that it is feasible to estimate SOCCNS stocks through the STC data across the Tibetan grasslands. Therefore, our results suggest that in order to accurately estimate the absolute SOC stocks and its change in the Tibetan alpine grasslands, adequate correction of the modified WB measurements is essential with correct consideration of the effects of soil types, vegetation, soil pH and soil depth.


Subject(s)
Calcium Carbonate/analysis , Carbon/chemistry , Grassland , Soil/chemistry , Calcium Carbonate/chemistry , Carbon Cycle , Climate Change , Tibet
8.
Biol Lett ; 11(1): 20140981, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25589490

ABSTRACT

The dynamics of leaf nitrogen (N) and phosphorus (P) have been intensively explored in short-term experiments, but rarely at longer timescales. Here, we investigated leaf N : P stoichiometry over a 27-year interval in an Inner Mongolia grassland by comparing leaf N : P concentration of 2006 with that of 1979. Across 80 species, both leaf N and P increased, but the increase in leaf N lagged behind that of leaf P, leading to a significant decrease in the N : P ratio. These changes in leaf N : P stoichiometry varied among functional groups. For leaf N, grasses increased, woody species tended to increase, whereas forbs showed no change. Unlike leaf N, leaf P of grasses and forbs increased, whereas woody species showed no change. Such changes may reflect N deposition and P release induced by soil acidification over the past decades. The interannual effect of precipitation may somewhat have reduced the soil available N, leading to the more modest increase of leaf N than of leaf P. Thus, leaf N : P stoichiometry significantly responded to long-term environmental changes in this temperate steppe, but different functional groups responded differently. Our results indicate that conclusions of plant stoichiometry under short-term N fertilization should be treated with caution when extrapolating to longer timescales.


Subject(s)
Nitrogen/analysis , Phosphorus/analysis , Plant Leaves/chemistry , China , Grassland , Hydrogen-Ion Concentration , Plants/chemistry , Poaceae/chemistry , Rain , Soil/chemistry
9.
Nature ; 515(7525): 108-11, 2014 11 06.
Article in English | MEDLINE | ID: mdl-25317555

ABSTRACT

In experimental plant communities, relationships between biodiversity and ecosystem functioning have been found to strengthen over time, a fact often attributed to increased resource complementarity between species in mixtures and negative plant-soil feedbacks in monocultures. Here we show that selection for niche differentiation between species can drive this increasing biodiversity effect. Growing 12 grassland species in test monocultures and mixtures, we found character displacement between species and increased biodiversity effects when plants had been selected over 8 years in species mixtures rather than in monocultures. When grown in mixtures, relative differences in height and specific leaf area between plant species selected in mixtures (mixture types) were greater than between species selected in monocultures (monoculture types). Furthermore, net biodiversity and complementarity effects were greater in mixtures of mixture types than in mixtures of monoculture types. Our study demonstrates a novel mechanism for the increase in biodiversity effects: selection for increased niche differentiation through character displacement. Selection in diverse mixtures may therefore increase species coexistence and ecosystem functioning in natural communities and may also allow increased mixture yields in agriculture or forestry. However, loss of biodiversity and prolonged selection of crops in monoculture may compromise this potential for selection in the longer term.


Subject(s)
Adaptation, Biological , Biodiversity , Plant Physiological Phenomena , Asteraceae/physiology , Biological Evolution , Biomass , Fabaceae/physiology , Poaceae/physiology , Selection, Genetic , Time Factors
10.
Ecol Appl ; 22(6): 1817-26, 2012 Sep.
Article in English | MEDLINE | ID: mdl-23092018

ABSTRACT

Biodiversity research shows that diverse plant communities are more stable and productive than monocultures. Similarly, populations in which genotypes with different pathogen resistance are mixed may have lower pathogen levels and thus higher productivity than genetically uniform populations. We used genetically modified (GM) wheat as a model system to test this prediction, because it allowed us to use genotypes that differed only in the trait pathogen resistance but were otherwise identical. We grew three such genotypes or lines in monocultures or two-line mixtures. Phenotypic measurements were taken at the level of individual plants and of entire plots (population level). We found that resistance to mildew increased with both GM richness (0, 1, or 2 Pm3 transgenes with different resistance specificities per plot) and GM concentration (0%, 50%, or 100% of all plants in a plot with a Pm3 transgene). Plots with two transgenes had 34.6% less mildew infection and as a consequence 7.3% higher seed yield than plots with one transgene. We conclude that combining genetic modification with mixed cropping techniques could be a promising approach to increase sustainability and productivity in agricultural systems, as the fitness cost of stacking transgenes within individuals may thus be avoided.


Subject(s)
Agriculture/methods , Plants, Genetically Modified/physiology , Triticum/genetics , Triticum/physiology , Biodiversity , Plant Diseases , Seeds
11.
Science ; 336(6081): 589-92, 2012 May 04.
Article in English | MEDLINE | ID: mdl-22556253

ABSTRACT

Plant diversity generally promotes biomass production, but how the shape of the response curve changes with time remains unclear. This is a critical knowledge gap because the shape of this relationship indicates the extent to which loss of the first few species will influence biomass production. Using two long-term (≥13 years) biodiversity experiments, we show that the effects of diversity on biomass productivity increased and became less saturating over time. Our analyses suggest that effects of diversity-dependent ecosystem feedbacks and interspecific complementarity accumulate over time, causing high-diversity species combinations that appeared functionally redundant during early years to become more functionally unique through time. Consequently, simplification of diverse ecosystems will likely have greater negative impacts on ecosystem functioning than has been suggested by short-term experiments.


Subject(s)
Biodiversity , Ecosystem , Plants , Poaceae , Biomass , Fabaceae/growth & development , Minnesota , Nitrogen , Nitrogen Cycle , Plant Development , Poaceae/growth & development , Soil/chemistry , Time Factors
12.
PLoS One ; 7(12): e52821, 2012.
Article in English | MEDLINE | ID: mdl-23300787

ABSTRACT

The functional diversity of a community can influence ecosystem functioning and reflects assembly processes. The large number of disparate metrics used to quantify functional diversity reflects the range of attributes underlying this concept, generally summarized as functional richness, functional evenness, and functional divergence. However, in practice, we know very little about which attributes drive which ecosystem functions, due to a lack of field-based tests. Here we test the association between eight leading functional diversity metrics (Rao's Q, FD, FDis, FEve, FDiv, convex hull volume, and species and functional group richness) that emphasize different attributes of functional diversity, plus 11 extensions of these existing metrics that incorporate heterogeneous species abundances and trait variation. We assess the relationships among these metrics and compare their performances for predicting three key ecosystem functions (above- and belowground biomass and light capture) within a long-term grassland biodiversity experiment. Many metrics were highly correlated, although unique information was captured in FEve, FDiv, and dendrogram-based measures (FD) that were adjusted by abundance. FD adjusted by abundance outperformed all other metrics in predicting both above- and belowground biomass, although several others also performed well (e.g. Rao's Q, FDis, FDiv). More generally, trait-based richness metrics and hybrid metrics incorporating multiple diversity attributes outperformed evenness metrics and single-attribute metrics, results that were not changed when combinations of metrics were explored. For light capture, species richness alone was the best predictor, suggesting that traits for canopy architecture would be necessary to improve predictions. Our study provides a comprehensive test linking different attributes of functional diversity with ecosystem function for a grassland system.


Subject(s)
Biodiversity , Poaceae/growth & development , Biomass , Minnesota , Models, Biological , Poaceae/radiation effects , Species Specificity , Sunlight
13.
PLoS One ; 6(9): e24107, 2011.
Article in English | MEDLINE | ID: mdl-21909413

ABSTRACT

Biodiversity plays an integral role in the livelihoods of subsistence-based forest-dwelling communities and as a consequence it is increasingly important to develop quantitative approaches that capture not only changes in taxonomic diversity, but also variation in natural resources and provisioning services. We apply a functional diversity metric originally developed for addressing questions in community ecology to assess utilitarian diversity of 56 forest plots in Madagascar. The use categories for utilitarian plants were determined using expert knowledge and household questionnaires. We used a null model approach to examine the utilitarian (functional) diversity and utilitarian redundancy present within ecological communities. Additionally, variables that might influence fluctuations in utilitarian diversity and redundancy--specifically number of felled trees, number of trails, basal area, canopy height, elevation, distance from village--were analyzed using Generalized Linear Models (GLMs). Eighteen of the 56 plots showed utilitarian diversity values significantly higher than expected. This result indicates that these habitats exhibited a low degree of utilitarian redundancy and were therefore comprised of plants with relatively distinct utilitarian properties. One implication of this finding is that minor losses in species richness may result in reductions in utilitarian diversity and redundancy, which may limit local residents' ability to switch between alternative choices. The GLM analysis showed that the most predictive model included basal area, canopy height and distance from village, which suggests that variation in utilitarian redundancy may be a result of local residents harvesting resources from the protected area. Our approach permits an assessment of the diversity of provisioning services available to local communities, offering unique insights that would not be possible using traditional taxonomic diversity measures. These analyses introduce another tool available to conservation biologists for assessing how future losses in biodiversity will lead to a reduction in natural resources and provisioning services from forests.


Subject(s)
Biodiversity , Conservation of Natural Resources , Residence Characteristics , Trees/growth & development , Geography , Linear Models , Madagascar , Models, Biological , Species Specificity
14.
Ecology ; 92(8): 1573-81, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21905424

ABSTRACT

How closely does variability in ecologically important traits reflect evolutionary divergence? The use of phylogenetic diversity (PD) to predict biodiversity effects on ecosystem functioning, and more generally the use of phylogenetic information in community ecology, depends in part on the answer to this question. However, comparisons of the predictive power of phylogenetic diversity and functional diversity (FD) have not been conducted across a range of experiments. To address how phylogenetic diversity and functional trait variation control biodiversity effects on biomass production, we summarized the results of 29 grassland plant experiments where both the phylogeny of plant species used in the experiments is well described and where extensive trait data are available. Functional trait variation was only partially related to phylogenetic distances between species, and the resulting FD values therefore correlate only partially with PD. Despite these differences, FD and PD predicted biodiversity effects across all experiments with similar strength, including in subsets that excluded plots with legumes and that focused on fertilization experiments. Two- and three-trait combinations of the five traits used here (leaf nitrogen percentage, height, specific root length, leaf mass per unit area, and nitrogen fixation) resulted in the FD values with the greatest predictive power. Both PD and FD can be valuable predictors of the effect of biodiversity on ecosystem functioning, which suggests that a focus on both community trait diversity and evolutionary history can improve understanding of the consequences of biodiversity loss.


Subject(s)
Biodiversity , Phylogeny , Plants/genetics , Plants/metabolism , Conservation of Natural Resources/methods , Models, Biological
15.
PLoS One ; 6(6): e21235, 2011.
Article in English | MEDLINE | ID: mdl-21698127

ABSTRACT

BACKGROUND: In Sub-Saharan Africa, 40% of children under five years in age are chronically undernourished. As new investments and attention galvanize action on African agriculture to reduce hunger, there is an urgent need for metrics that monitor agricultural progress beyond calories produced per capita and address nutritional diversity essential for human health. In this study we demonstrate how an ecological tool, functional diversity (FD), has potential to address this need and provide new insights on nutritional diversity of cropping systems in rural Africa. METHODS AND FINDINGS: Data on edible plant species diversity, food security and diet diversity were collected for 170 farms in three rural settings in Sub-Saharan Africa. Nutritional FD metrics were calculated based on farm species composition and species nutritional composition. Iron and vitamin A deficiency were determined from blood samples of 90 adult women. Nutritional FD metrics summarized the diversity of nutrients provided by the farm and showed variability between farms and villages. Regression of nutritional FD against species richness and expected FD enabled identification of key species that add nutrient diversity to the system and assessed the degree of redundancy for nutrient traits. Nutritional FD analysis demonstrated that depending on the original composition of species on farm or village, adding or removing individual species can have radically different outcomes for nutritional diversity. While correlations between nutritional FD, food and nutrition indicators were not significant at household level, associations between these variables were observed at village level. CONCLUSION: This study provides novel metrics to address nutritional diversity in farming systems and examples of how these metrics can help guide agricultural interventions towards adequate nutrient diversity. New hypotheses on the link between agro-diversity, food security and human nutrition are generated and strategies for future research are suggested calling for integration of agriculture, ecology, nutrition, and socio-economics.


Subject(s)
Crops, Agricultural , Nutritive Value , Adult , Africa South of the Sahara/epidemiology , Anemia, Iron-Deficiency/epidemiology , Female , Humans , Rural Population , Vitamin A Deficiency/epidemiology
16.
J Plant Res ; 123(4): 551-61, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20066555

ABSTRACT

Although broad-scale inter-specific patterns of leaf traits are influenced by climate, soil, and taxonomic identity, integrated assessments of these drivers remain rare. Here, we quantify these drivers in a field study of 171 plant species in 174 sites across Chinese grasslands, including the Tibetan Plateau, Inner Mongolia, and Xinjiang. General linear models were used to partition leaf trait variation. Of the total variation in leaf traits, on average 27% is due to taxonomic or phylogenetic differences among species within sites (pure species effect), 29% to variation among sites within species (pure site effect), 38% to joint effects of taxonomic and environmental factors (shared effect), and 6.2% to within-site and within-species variation. Examining the pure site effect, climate explained 7.8%, soil explained 7.4%, and climate and soil variables together accounted for 11%, leaving 18% of the inter-site variation due to factors other than climate or soil. The results do not support the hypothesis that soil fertility is the "missing link" to explain leaf trait variation unexplained by climatic factors. Climate- and soil-induced leaf adaptations occur mostly among species, and leaf traits vary little within species in Chinese grassland plants, despite strongly varying climate and soil conditions.


Subject(s)
Climate , Ecosystem , Phylogeny , Plant Leaves/anatomy & histology , Poaceae/classification , Poaceae/genetics , Soil , China , Linear Models , Photosynthesis , Poaceae/anatomy & histology , Quantitative Trait, Heritable , Species Specificity
17.
Ecology ; 90(10): 2779-91, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19886487

ABSTRACT

Assessing the influence of climate, soil fertility, and species identity on leaf trait relationships is crucial for understanding the adaptations of plants to their environment and for interpreting leaf trait relationships across spatial scales. In a comparative field study of 171 plant species in 174 grassland sites across China, we examined the trade-offs, defined as negative covariance between two traits, between leaf persistence (leaf mass per area, LMA) and leaf productivity (mass-based photosynthetic rate, Amass, N and P content, and photosynthetic N use efficiency, PNUE). We asked to which extent these trade-offs were influenced by: (1) variation among sites within species, decomposed into variation due to climatic and soil variables; (2) variation among species within sites, decomposed into variation among taxonomic, functional, or phylogenetic groups; and (3) the joint contribution of variation among species and sites. We used mixed-model analysis of covariance to partition bivariate relationships between leaf traits into trade-off components. We found significant mass-based persistence-productivity trade-offs of LMA-Amass, LMA-N, LMA-P, and LMA-PNUE consistent with previous broadscale findings. Overall, (1) variation among sites within species explained 14-23%, (2) variation among species within sites explained 20-34%, and (3) the two together explained 42-63% of the total covariance between leaf traits. Interspecific trade-offs of LMA-Amass, LMA-N, and LMA-P were stronger than inter-site ones. A relatively low amount of covariance was explained by climatic and soil variables. However, we found the trade-offs were stronger for LMA-N and LMA-P at higher precipitation and for LMA-PNUE at greater soil fertility, if displayed by major axis regression, which combined both intra- and interspecific variation. Residual trade-offs within species and sites were weak, suggesting that intraspecific, intra-site variation in physiology was less important than variation imposed by species identity or environmental differences among sites. Our results from grassland biomes add evidence for the fundamental nature of productivity-persistence trade-offs in plants. No individual factor emerged as the single major cause for these trade-offs. Rather, the total covariance between leaf traits was explained by a combination of factors, each contributing a range of explanatory power.


Subject(s)
Ecosystem , Phylogeny , Plant Leaves/genetics , Plant Leaves/physiology , Plants/classification , Plants/genetics , China , Climate , Soil/analysis
18.
Ecol Appl ; 19(7): 1858-67, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19831075

ABSTRACT

In agroecosystems, biodiversity correlates with ecosystem function, yet mechanisms driving these relationships are often unknown. Examining traits and functional classifications of organisms providing ecosystem functions may provide insight into the mechanisms. Birds are important predators of insects, including pests. However, biological simplification of agroforests may decrease provisioning of this pest removal service by reducing bird taxonomic and functional diversity. A recent meta-analysis of bird exclosure studies from a range of agroecosystems in Central America concluded that higher bird richness is associated with significantly greater arthropod removal, yet the mechanism remains unclear. We conducted a meta-analysis of the same data to examine whether birds demonstrate functional complementarity in tropical agroforests. We classified birds according to relevant traits (body mass, foraging strategy, foraging Strata, and diet) and then examined how design of functional classification, including trait selection, classification methods, and the functional diversity metric used affect the suitability of different classifications as predictors of ecosystem services. We determined that vegetation characteristics are not likely drivers of arthropod removal by birds. For some functional classifications, functional richness positively correlated with arthropod removal, indicating that species complementarity may be an important mechanism behind this ecosystem function. The predictive ability of functional classifications increased with the number of traits included in the classification. For the two best classifications examined, functional group richness was a better predictor of arthropod reduction than other metrics of functional diversity (FD and Rao's Q). However, no functional classification predicted arthropod removal better than simple species richness; thus other factors may be important. Our analysis indicates that the sampling effect may also play a role, as one species and two functional groups were responsible for disproportionate effects of arthropod removal.


Subject(s)
Agriculture , Arthropods/physiology , Birds/physiology , Ecosystem , Predatory Behavior/physiology , Tropical Climate , Animals
19.
Environ Manage ; 44(1): 136-48, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19224275

ABSTRACT

Despite their prevalence in both developed and developing countries, there have been surprisingly few field assessments of the ecological effectiveness of protected areas. This study aimed to assess the effectiveness of a key protected area in eastern Madagascar, Ranomafana National Park (RNP). We established paired 100 x 4-m vegetation transects (400 m(2)) within RNP and in remnant forests in the park's peripheral zone. In each 400-m(2) plot, all woody stems >1.5 cm in diameter at breast height were measured and identified to species. All species were also identified as native or non-native. We identified utilitarian species within all transects and they were sorted into use category. We calculated plot-level taxonomic biodiversity and functional diversity of utilitarian species; the latter was calculated by clustering the multivariate distances between species based on their utilitarian traits, and all metrics were tested using paired t-tests. Our results showed that there was significantly higher biodiversity inside RNP than in remnant forests and this pattern was consistent across all diversity metrics examined. Forests not located within the park's boundary had significantly higher non-native species than within RNP. There was no statistically significant difference in functional diversity of utilitarian species inside RNP vs. remnant forests; however, the overall trend was toward higher diversity inside park boundaries. These findings suggested that RNP has been effective at maintaining taxonomic diversity relative to surrounding unprotected areas and restricting the spread of non-native plants. The results also suggested that low functional redundancy of forests outside of RNP might be of concern, because residents in surrounding villages may have few other substitutes for the services provided by species that are of critical importance to their livelihoods. This study highlights the challenges of trying to reconcile biodiversity conservation with human use of natural resources in economically poor, remote areas.


Subject(s)
Biodiversity , Conservation of Natural Resources/methods , Plants/classification , Trees/classification , Ecosystem , Madagascar , Plant Development , Trees/growth & development
20.
Ecol Lett ; 12(1): 22-33, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19087109

ABSTRACT

Land use intensification can greatly reduce species richness and ecosystem functioning. However, species richness determines ecosystem functioning through the diversity and values of traits of species present. Here, we analyze changes in species richness and functional diversity (FD) at varying agricultural land use intensity levels. We test hypotheses of FD responses to land use intensification in plant, bird, and mammal communities using trait data compiled for 1600+ species. To isolate changes in FD from changes in species richness we compare the FD of communities to the null expectations of FD values. In over one-quarter of the bird and mammal communities impacted by agriculture, declines in FD were steeper than predicted by species number. In plant communities, changes in FD were indistinguishable from changes in species richness. Land use intensification can reduce the functional diversity of animal communities beyond changes in species richness alone, potentially imperiling provisioning of ecosystem services.


Subject(s)
Adaptation, Biological/physiology , Agriculture , Biodiversity , Birds/physiology , Mammals/physiology , Models, Biological , Plant Physiological Phenomena , Animals , Central America , Databases, Factual , North America , Population Dynamics , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...