Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Med Genet A ; 188(10): 3121-3125, 2022 10.
Article in English | MEDLINE | ID: mdl-35860951

ABSTRACT

POLE is a pleiotropic gene with phenotypic expression of pathogenic variants depending on the type of variant, impact on the protein, and mode of inheritance. Heterozygous missense variants located within the exonuclease domain have been shown to result in polymerase proofreading-associated polyposis (PPAP) which is characterized by an increased risk for colon polyps and colorectal cancer. Biallelic variants resulting in markedly reduced amounts of normal protein have been reported in two separate recessive pediatric syndromes: facial dysmorphism, immunodeficiency, livedo, and short stature as well as intrauterine growth restriction, metaphyseal dysplasia, adrenal hypoplasia congenital, and genital anomalies. Here we report two siblings identified to have POLE c.1686 + 32C > G in trans with POLE p.(Glu709*) via exome sequencing. A detailed review of the reported phenotypes in these two siblings and from available literature revealed that individuals with biallelic POLE pathogenic variants resulting in partial loss-of-function present with a similar phenotype: short stature and facial dysmorphism with or without immunodeficiency. These data suggest a phenotypic continuum between the previously reported POLE-related recessive disorders.


Subject(s)
Dwarfism , Musculoskeletal Abnormalities , Osteochondrodysplasias , Dwarfism/diagnosis , Dwarfism/genetics , Humans , Mutation, Missense , Osteochondrodysplasias/genetics , Phenotype , Exome Sequencing
2.
Hum Mutat ; 43(9): 1183-1200, 2022 09.
Article in English | MEDLINE | ID: mdl-35475527

ABSTRACT

ENPP1 encodes ENPP1, an ectonucleotidase catalyzing hydrolysis of ATP to AMP and inorganic pyrophosphate (PPi), and an endogenous plasma protein physiologically preventing ectopic calcification of connective tissues. Mutations in ENPP1 have been reported in association with a range of human genetic diseases. In this mutation update, we provide a comprehensive review of all the pathogenic variants, likely pathogenic variants, and variants of unknown significance in ENPP1 associated with three autosomal recessive disorders-generalized arterial calcification of infancy (GACI), autosomal recessive hypophosphatemic rickets type 2 (ARHR2), and pseudoxanthoma elasticum (PXE), as well as with a predominantly autosomal dominant disorder-Cole disease. The classification of all variants is determined using the latest ACMG guidelines. A total of 140 ENPP1 variants were curated consisting of 133 previously reported variants and seven novel variants, with missense variants being the most prevalent (70.0%, 98/140). While the pathogenic variants are widely distributed in the ENPP1 gene of patientsgen without apparent genotype-phenotype correlation, eight out of nine variants associated with Cole disease are confined to the somatomedin-B-like (SMB) domains critical for homo-dimerization of the ENPP1 protein.


Subject(s)
Hypopigmentation , Phosphoric Diester Hydrolases , Pyrophosphatases , Rickets, Hypophosphatemic , Vascular Calcification , Humans , Hypopigmentation/genetics , Mutation , Phosphoric Diester Hydrolases/genetics , Pyrophosphatases/genetics , Rickets, Hypophosphatemic/complications , Rickets, Hypophosphatemic/genetics , Vascular Calcification/genetics
3.
Hum Mutat ; 39(2): 237-254, 2018 02.
Article in English | MEDLINE | ID: mdl-29098742

ABSTRACT

Fanconi anemia (FA) is a rare recessive DNA repair deficiency resulting from mutations in one of at least 22 genes. Two-thirds of FA families harbor mutations in FANCA. To genotype patients in the International Fanconi Anemia Registry (IFAR) we employed multiple methodologies, screening 216 families for FANCA mutations. We describe identification of 57 large deletions and 261 sequence variants, in 159 families. All but seven families harbored distinct combinations of two mutations demonstrating high heterogeneity. Pathogenicity of the 18 novel missense variants was analyzed functionally by determining the ability of the mutant cDNA to improve the survival of a FANCA-null cell line when treated with MMC. Overexpressed pathogenic missense variants were found to reside in the cytoplasm, and nonpathogenic in the nucleus. RNA analysis demonstrated that two variants (c.522G > C and c.1565A > G), predicted to encode missense variants, which were determined to be nonpathogenic by a functional assay, caused skipping of exons 5 and 16, respectively, and are most likely pathogenic. We report 48 novel FANCA sequence variants. Defining both variants in a large patient cohort is a major step toward cataloging all FANCA variants, and permitting studies of genotype-phenotype correlations.


Subject(s)
Fanconi Anemia Complementation Group A Protein/genetics , Fanconi Anemia/genetics , Mutation, Missense/genetics , Cell Line , Fanconi Anemia/pathology , Fluorescent Antibody Technique , Humans
4.
Nat Immunol ; 16(1): 67-74, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25419628

ABSTRACT

Immune responses are tightly regulated to ensure efficient pathogen clearance while avoiding tissue damage. Here we report that Setdb2 was the only protein lysine methyltransferase induced during infection with influenza virus. Setdb2 expression depended on signaling via type I interferons, and Setdb2 repressed expression of the gene encoding the neutrophil attractant CXCL1 and other genes that are targets of the transcription factor NF-κB. This coincided with occupancy by Setdb2 at the Cxcl1 promoter, which in the absence of Setdb2 displayed diminished trimethylation of histone H3 Lys9 (H3K9me3). Mice with a hypomorphic gene-trap construct of Setdb2 exhibited increased infiltration of neutrophils during sterile lung inflammation and were less sensitive to bacterial superinfection after infection with influenza virus. This suggested that a Setdb2-mediated regulatory crosstalk between the type I interferons and NF-κB pathways represents an important mechanism for virus-induced susceptibility to bacterial superinfection.


Subject(s)
Histone-Lysine N-Methyltransferase/immunology , NF-kappa B/immunology , Orthomyxoviridae Infections/immunology , Orthomyxoviridae/immunology , Pneumonia/immunology , Superinfection/immunology , Animals , Chemokine CXCL1/immunology , Disease Susceptibility , Female , Interferon Type I/immunology , Male , Mice, Inbred C57BL , Mice, Knockout , Oligonucleotide Array Sequence Analysis , Orthomyxoviridae Infections/enzymology , Orthomyxoviridae Infections/virology , Pneumonia/enzymology , Pneumonia/virology , RNA/chemistry , RNA/genetics , Real-Time Polymerase Chain Reaction , Specific Pathogen-Free Organisms , Superinfection/enzymology , Superinfection/microbiology
5.
Hum Mutat ; 35(11): 1342-53, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25168418

ABSTRACT

Fanconi anemia (FA) is a rare recessive disease resulting from mutations in one of at least 16 different genes. Mutation types and phenotypic manifestations of FA are highly heterogeneous and influence the clinical management of the disease. We analyzed 202 FA families for large deletions, using high-resolution comparative genome hybridization arrays, single-nucleotide polymorphism arrays, and DNA sequencing. We found pathogenic deletions in 88 FANCA, seven FANCC, two FANCD2, and one FANCB families. We find 35% of FA families carry large deletions, accounting for 18% of all FA pathogenic variants. Cloning and sequencing across the deletion breakpoints revealed that 52 FANCA deletion ends, and one FANCC deletion end extended beyond the gene boundaries, potentially affecting neighboring genes with phenotypic consequences. Seventy-five percent of the FANCA deletions are Alu-Alu mediated, predominantly by AluY elements, and appear to be caused by nonallelic homologous recombination. Individual Alu hotspots were identified. Defining the haplotypes of four FANCA deletions shared by multiple families revealed that three share a common ancestry. Knowing the exact molecular changes that lead to the disease may be critical for a better understanding of the FA phenotype, and to gain insight into the mechanisms driving these pathogenic deletion variants.


Subject(s)
Fanconi Anemia Complementation Group Proteins/genetics , Fanconi Anemia/genetics , Genomics , Sequence Deletion , Alu Elements , Base Sequence , Chromosome Breakpoints , Cloning, Molecular , Comparative Genomic Hybridization , Conserved Sequence , Fanconi Anemia Complementation Group Proteins/classification , Genome-Wide Association Study , Genotype , Haplotypes , Humans , Linkage Disequilibrium , Phylogeny , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
6.
Retrovirology ; 5: 40, 2008 May 22.
Article in English | MEDLINE | ID: mdl-18498648

ABSTRACT

BACKGROUND: The rate of transcription of the HIV-1 viral genome is mediated by the interaction of the viral protein Tat with the LTR and other transcriptional machinery. These specific interactions can be affected by the state of post-translational modifications on Tat. Previously, we have shown that Tat can be phosphorylated and acetylated in vivo resulting in an increase in the rate of transcription. In the present study, we investigated whether Tat could be methylated on lysine residues, specifically on lysine 50 and 51, and whether this modification resulted in a decrease of viral transcription from the LTR. RESULTS: We analyzed the association of Tat with histone methyltransferases of the SUV39-family of SET domain containing proteins in vitro. Tat was found to associate with both SETDB1 and SETDB2, two enzymes which exhibit methyltransferase activity. siRNA against SETDB1 transfected into cell systems with both transient and integrated LTR reporter genes resulted in an increase in transcription of the HIV-LTR in the presence of suboptimal levels of Tat. In vitro methylation assays with Tat peptides containing point mutations at lysines 50 and 51 showed an increased incorporation of methyl groups on lysine 51, however, both residues indicated susceptibility for methylation. CONCLUSION: The association of Tat with histone methyltransferases and the ability for Tat to be methylated suggests an interesting mechanism of transcriptional regulation through the recruitment of chromatin remodeling proteins to the HIV-1 promoter.


Subject(s)
HIV Long Terminal Repeat , HIV-1/physiology , Lysine/metabolism , Protein Methyltransferases/metabolism , Transcription, Genetic , tat Gene Products, Human Immunodeficiency Virus/metabolism , Cell Line , Genes, Reporter , HIV-1/genetics , Histone-Lysine N-Methyltransferase , Humans , Lysine/genetics , Methylation , Protein Binding , Protein Methyltransferases/chemistry , Protein Methyltransferases/genetics , Protein Processing, Post-Translational , Protein Structure, Tertiary , RNA, Small Interfering/genetics , Transcriptional Activation , Virus Activation , tat Gene Products, Human Immunodeficiency Virus/chemistry , tat Gene Products, Human Immunodeficiency Virus/genetics
7.
Extremophiles ; 8(3): 243-51, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15197605

ABSTRACT

Conserved motifs found in known bacterial polI DNA polymerase sequences were identified, and degenerate PCR primers were designed for PCR amplification of an internal portion of polI genes from all bacterial divisions. We describe here a method that has allowed the rapid identification and isolation of 13 polI genes from a diverse selection of thermophilic bacteria and report on the biochemical characteristics of nine of the purified recombinant enzymes. Several enzymes showed significant reverse-transcriptase activity in the presence of Mg2+, particularly the polymerases from Bacillus caldolyticus EA1, Caldibacillus cellovorans CompA.2, and Clostridium stercorarium.


Subject(s)
Bacteria/enzymology , DNA Polymerase I/metabolism , RNA-Directed DNA Polymerase/metabolism , Bacillus/enzymology , Bacillus/genetics , Bacteria/genetics , Base Sequence , Cloning, Molecular , Clostridium/enzymology , Clostridium/genetics , DNA Polymerase I/genetics , DNA Primers/genetics , DNA, Bacterial/genetics , Enzyme Stability , Genes, Bacterial , Hot Temperature , Kinetics , Magnesium/pharmacology , Molecular Sequence Data , RNA-Directed DNA Polymerase/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Homology, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...