Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neurobiol Sleep Circadian Rhythms ; 13: 100081, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35989719

ABSTRACT

Sleep deprivation (SD) causes significant deficits in multiple aspects of cognition, including sustained attention and working memory. Investigating the neural processes underpinning these cognitive losses has proven challenging due to the confounds of current animal tasks; many employ appetitive or aversive stimuli to motivate behavior, while others lack task complexity that translates to human studies of executive function. We established the Lux Actuating Search Task (LAST) to circumvent these issues. The LAST is performed in a circular, open-field arena that requires rats to find an unmarked, quasi-randomly positioned target. Constant low-level floor vibrations motivate ambulation, while light intensity (determined by the rodent's proximity to the target destination) provides continuous visual feedback. The task has two paradigms that differ based on the relationship between the light intensity and target proximity: the Low Lux Target (LLT) paradigm and the High Lux Target paradigm (HLT). In this study, on days 1-6, the rats completed nine trials per day on one of the two paradigms. On day 7, the rats were either sleep deprived by gentle handling or were left undisturbed before undertaking the opposite (reversal) paradigm on days 7-9. Our results showed that SD significantly impeded the ability of Long Evans rats to learn the reversal paradigm, as indicated by increased times to target and increased failure percentages compared to rats whose sleep was undisturbed. Rats also showed reduced learning with the HLT paradigm, as the initial task or as the reversal task, likely due to the rodents' photophobia limiting their motivation to navigate toward a bright light, which is required to succeed.

2.
Cancer Discov ; 12(9): 2198-2219, 2022 09 02.
Article in English | MEDLINE | ID: mdl-35771494

ABSTRACT

The mechanisms underlying metabolic adaptation of pancreatic ductal adenocarcinoma (PDA) cells to pharmacologic inhibition of RAS-MAPK signaling are largely unknown. Using transcriptome and chromatin immunoprecipitation profiling of PDA cells treated with the MEK inhibitor (MEKi) trametinib, we identify transcriptional antagonism between c-MYC and the master transcription factors for lysosome gene expression, the MiT/TFE proteins. Under baseline conditions, c-MYC and MiT/TFE factors compete for binding to lysosome gene promoters to fine-tune gene expression. Treatment of PDA cells or patient organoids with MEKi leads to c-MYC downregulation and increased MiT/TFE-dependent lysosome biogenesis. Quantitative proteomics of immunopurified lysosomes uncovered reliance on ferritinophagy, the selective degradation of the iron storage complex ferritin, in MEKi-treated cells. Ferritinophagy promotes mitochondrial iron-sulfur cluster protein synthesis and enhanced mitochondrial respiration. Accordingly, suppressing iron utilization sensitizes PDA cells to MEKi, highlighting a critical and targetable reliance on lysosome-dependent iron supply during adaptation to KRAS-MAPK inhibition. SIGNIFICANCE: Reduced c-MYC levels following MAPK pathway suppression facilitate the upregulation of autophagy and lysosome biogenesis. Increased autophagy-lysosome activity is required for increased ferritinophagy-mediated iron supply, which supports mitochondrial respiration under therapy stress. Disruption of ferritinophagy synergizes with KRAS-MAPK inhibition and blocks PDA growth, thus highlighting a key targetable metabolic dependency. See related commentary by Jain and Amaravadi, p. 2023. See related article by Santana-Codina et al., p. 2180. This article is highlighted in the In This Issue feature, p. 2007.


Subject(s)
Carcinoma, Pancreatic Ductal , Iron-Sulfur Proteins , Pancreatic Neoplasms , Humans , Biological Availability , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Iron/metabolism , Iron/therapeutic use , Iron-Sulfur Proteins/metabolism , Iron-Sulfur Proteins/therapeutic use , Nuclear Receptor Coactivators/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Sulfur/metabolism , Sulfur/therapeutic use , Transcription Factors/metabolism , Pancreatic Neoplasms
SELECTION OF CITATIONS
SEARCH DETAIL
...