Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 15: 1393621, 2024.
Article in English | MEDLINE | ID: mdl-38903439

ABSTRACT

Seed quality traits of oilseed rape, Brassica napus (B. napus), exhibit quantitative inheritance determined by its genetic makeup and the environment via the mediation of a complex genetic architecture of hundreds to thousands of genes. Thus, instead of single gene analysis, network-based systems genomics and genetics approaches that combine genotype, phenotype, and molecular phenotypes offer a promising alternative to uncover this complex genetic architecture. In the current study, systems genetics approaches were used to explore the genetic regulation of lignin traits in B. napus seeds. Four QTL (qLignin_A09_1, qLignin_A09_2, qLignin_A09_3, and qLignin_C08) distributed on two chromosomes were identified for lignin content. The qLignin_A09_2 and qLignin_C08 loci were homologous QTL from the A and C subgenomes, respectively. Genome-wide gene regulatory network analysis identified eighty-three subnetworks (or modules); and three modules with 910 genes in total, were associated with lignin content, which was confirmed by network QTL analysis. eQTL (expression quantitative trait loci) analysis revealed four cis-eQTL genes including lignin and flavonoid pathway genes, cinnamoyl-CoA-reductase (CCR1), and TRANSPARENT TESTA genes TT4, TT6, TT8, as causal genes. The findings validated the power of systems genetics to identify causal regulatory networks and genes underlying complex traits. Moreover, this information may enable the research community to explore new breeding strategies, such as network selection or gene engineering, to rewire networks to develop climate resilience crops with better seed quality.

2.
Phytopathology ; 113(5): 847-857, 2023 May.
Article in English | MEDLINE | ID: mdl-36656304

ABSTRACT

Pyramiding multiple resistant genes has been proposed as the most effective way to control wheat rust diseases globally. Identifying the most effective pyramids is challenged by the large pool of rust resistance genes and limited information about their mechanisms of resistance and interactions. Here, using a high-density genetic map, a double haploid population, and multi-rust field testing, we aimed to systematically characterize the most effective gene pyramids for rust resistance from the durable multi-rust resistant CIMMYT cultivar Parula. We revealed that the Parula resistance gene pyramid contains Lr34/Yr18/Sr57 (Lr34), Lr46/Yr29/Sr58 (Lr46), Lr27/Yr30/Sr2 (Sr2), and Lr68. The efficacy, magnitude of effect, and interactions varied for the three rust diseases. A subpopulation mapping approach was applied to characterize the complex interactions of the resistance genes by controlling for the effect of Lr34. Using this approach, we found that Lr34 and Lr68 have a strong additive effect for leaf rust, whereas no additive effects were observed for any rusts between Lr34 and Lr46. Lr34 combined synergistically with Sr12 from Thatcher for stem rust, whereas the additive effect of Lr34 and Sr2 was dependent on the type of rust and environment. Two novel leaf rust quantitative trait loci (QTLs) from Parula were identified in this study, a stable QTL QLr-7BS and QLr-5AS, which showed Lr34 dependent expression. With these findings, we propose combining two to three high-value genes from Canadian wheat (e.g., Sr12 from Thatcher) with a foundational multi-adult plant resistance cassette for desirable and durable resistance to all three rusts in Canadian wheat.


Subject(s)
Basidiomycota , Plant Diseases , Chromosome Mapping , Plant Diseases/genetics , Canada , Quantitative Trait Loci/genetics , Basidiomycota/genetics , Disease Resistance/genetics
3.
Biology (Basel) ; 10(8)2021 Aug 06.
Article in English | MEDLINE | ID: mdl-34439988

ABSTRACT

Fusarium head blight (FHB) resistance is quantitatively inherited, controlled by multiple minor effect genes, and highly affected by the interaction of genotype and environment. This makes genomic selection (GS) that uses genome-wide molecular marker data to predict the genetic breeding value as a promising approach to select superior lines with better resistance. However, various factors can affect accuracies of GS and better understanding how these factors affect GS accuracies could ensure the success of applying GS to improve FHB resistance in wheat. In this study, we performed a comprehensive evaluation of factors that affect GS accuracies with a multi-parental population designed for FHB resistance. We found larger sample sizes could get better accuracies. Training population designed by CDmean based optimization algorithms significantly increased accuracies than random sampling approach, while mean of predictor error variance (PEVmean) had the poorest performance. Different genomic selection models performed similarly for accuracies. Including prior known large effect quantitative trait loci (QTL) as fixed effect into the GS model considerably improved the predictability. Multi-traits models had almost no effects, while the multi-environment model outperformed the single environment model for prediction across different environments. By comparing within and across family prediction, better accuracies were obtained with the training population more closely related to the testing population. However, achieving good accuracies for GS prediction across populations is still a challenging issue for GS application.

4.
Front Plant Sci ; 11: 580833, 2020.
Article in English | MEDLINE | ID: mdl-33193525

ABSTRACT

Fusarium head blight (FHB) is a devastating fungal disease of small-grain cereals that results in severe yield and quality losses. FHB resistance is controlled by resistance components including incidence, field severity, visual rating index, Fusarium damaged kernels (FDKs), and the accumulation of the mycotoxin deoxynivalenol (DON). Resistance conferred by each of these components is partial and must be combined to achieve resistance sufficient to protect wheat from yield losses. In this study, two biparental mapping populations were analyzed in Canadian FHB nurseries and quantitative trait loci (QTL) mapped for the traits listed above. Nine genomic loci, on 2AS, 2BS, 3BS, 4AS, 4AL, 4BS, 5AS, 5AL, and 5BL, were enriched for the majority of the QTL controlling FHB resistance. The previously validated FHB resistance QTL on 3BS and 5AS affected resistance to severity, FDK, and DON in these populations. The remaining seven genomic loci colocalize with flowering time and/or plant height QTL. The QTL on 4B was a major contributor to all field resistance traits and plant height in the field. QTL on 4AL showed contrasting effects for FHB resistance between Eastern and Western Canada, indicating a local adapted resistance to FHB. In addition, we also found that the 2AS QTL contributed a major effect for DON, and the 2BS for FDK, while the 5AL conferred mainly effect for both FDK/DON. Results presented here provide insight into the genetic architecture underlying these resistant components and insight into how FHB resistance in wheat is controlled by a complex network of interactions between genes controlling flowering time, plant height, local adaption, and FHB resistance components.

5.
Sci Rep ; 10(1): 7567, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32372012

ABSTRACT

The durum wheat line DT696 is a source of moderate Fusarium head blight (FHB) resistance. Previous analysis using a bi-parental population identified two FHB resistance quantitative trait loci (QTL) on chromosome 5A: 5A1 was co-located with a plant height QTL, and 5A2 with a major maturity QTL. A Genome-Wide Association Study (GWAS) of DT696 derivative lines from 72 crosses based on multi-environment FHB resistance, plant height, and maturity phenotypic data was conducted to improve the mapping resolution and further elucidate the genetic relationship of height and maturity with FHB resistance. The Global Tetraploid Wheat Collection (GTWC) was exploited to identify durum wheat lines with DT696 allele and additional recombination events. The 5A2 QTL was confirmed in the derivatives, suggesting the expression stability of the 5A2 QTL in various genetic backgrounds. The GWAS led to an improved mapping resolution rendering the 5A2 interval 10 Mbp shorter than the bi-parental QTL mapping interval. Haplotype analysis using SNPs within the 5A2 QTL applied to the GTWC identified novel haplotypes and recombination breakpoints, which could be exploited for further improvement of the mapping resolution. This study suggested that GWAS of derivative breeding lines is a credible strategy for improving mapping resolution.


Subject(s)
Chromosome Mapping , Disease Resistance/genetics , Plant Breeding , Plant Diseases/genetics , Quantitative Trait Loci , Recombination, Genetic , Triticum/genetics , Fusarium , Genetic Association Studies , Genetic Predisposition to Disease , Genome-Wide Association Study , Host-Pathogen Interactions/genetics , Linkage Disequilibrium , Plant Diseases/microbiology , Quantitative Trait, Heritable , Selection, Genetic , Triticum/microbiology
6.
Front Plant Sci ; 11: 592064, 2020.
Article in English | MEDLINE | ID: mdl-33424887

ABSTRACT

Durum wheat is an economically important crop for Canadian farmers. Fusarium head blight (FHB) is one of the most destructive diseases that threatens durum production in Canada. FHB reduces yield and end-use quality and most commonly contaminates the grain with the fungal mycotoxin deoxynivalenol, also known as DON. Serious outbreaks of FHB can occur in durum wheat in Canada, and combining genetic resistance with fungicide application is a cost effective approach to control this disease. However, there is limited variation for genetic resistance to FHB in elite Canadian durum cultivars. To explore and identify useful genetic FHB resistance variation for the improvement of Canadian durum wheat, we assembled an association mapping (AM) panel of diverse durum germplasms and performed genome wide association analysis (GWAS). Thirty-one quantitative trait loci (QTL) across all 14 chromosomes were significantly associated with FHB resistance. On 3BS, a stable QTL with a larger effect for resistance was located close to the centromere of 3BS. Three haplotypes of Fhb1 QTL were identified, with an emmer wheat haplotype contributing to disease susceptibility. The large number of QTL identified here can provide a rich resource to improve FHB resistance in commercially grown durum wheat. Among the 31 QTL most were associated with plant height and/or flower time. QTL 1A.1, 1A.2, 3B.2, 5A.1, 6A.1, 7A.3 were associated with FHB resistance and not associated or only weakly associated with flowering time nor plant height. These QTL have features that would make them good targets for FHB resistance breeding.

7.
BMC Genomics ; 20(1): 925, 2019 Dec 03.
Article in English | MEDLINE | ID: mdl-31795948

ABSTRACT

BACKGROUND: Fusarium head blight (FHB) resistance in the durum wheat breeding gene pool is rarely reported. Triticum turgidum ssp. carthlicum line Blackbird is a tetraploid relative of durum wheat that offers partial FHB resistance. Resistance QTL were identified for the durum wheat cv. Strongfield × Blackbird population on chromosomes 1A, 2A, 2B, 3A, 6A, 6B and 7B in a previous study. The objective of this study was to identify the defense mechanisms underlying the resistance of Blackbird and report candidate regulator defense genes and single nucleotide polymorphism (SNP) markers within these genes for high-resolution mapping of resistance QTL reported for the durum wheat cv. Strongfield/Blackbird population. RESULTS: Gene network analysis identified five networks significantly (P < 0.05) associated with the resistance to FHB spread (Type II FHB resistance) one of which showed significant correlation with both plant height and relative maturity traits. Two gene networks showed subtle differences between Fusarium graminearum-inoculated and mock-inoculated plants, supporting their involvement in constitutive defense. The candidate regulator genes have been implicated in various layers of plant defense including pathogen recognition (mainly Nucleotide-binding Leucine-rich Repeat proteins), signaling pathways including the abscisic acid and mitogen activated protein (MAP) kinase, and downstream defense genes activation including transcription factors (mostly with dual roles in defense and development), and cell death regulator and cell wall reinforcement genes. The expression of five candidate genes measured by quantitative real-time PCR was correlated with that of RNA-seq, corroborating the technical and analytical accuracy of RNA-sequencing. CONCLUSIONS: Gene network analysis allowed identification of candidate regulator genes and genes associated with constitutive resistance, those that will not be detected using traditional differential expression analysis. This study also shed light on the association of developmental traits with FHB resistance and partially explained the co-localization of FHB resistance with plant height and maturity QTL reported in several previous studies. It also allowed the identification of candidate hub genes within the interval of three previously reported FHB resistance QTL for the Strongfield/Blackbird population and associated SNPs for future high resolution mapping studies.


Subject(s)
Disease Resistance/genetics , Fusarium , Gene Regulatory Networks , Triticum/genetics , Triticum/microbiology , Gene Expression , Genotype , Plant Diseases/microbiology , Polymorphism, Single Nucleotide , Tetraploidy , Triticum/metabolism
8.
New Phytol ; 221(2): 919-934, 2019 01.
Article in English | MEDLINE | ID: mdl-30218535

ABSTRACT

UBC13 is required for Lys63-linked polyubiquitination and innate immune responses in mammals, but its functions in plant immunity remain to be defined. Here we used genetic and pathological methods to evaluate roles of Arabidopsis UBC13 in response to pathogens and environmental stresses. Loss of UBC13 failed to activate the expression of numerous cold-responsive genes and resulted in hypersensitivity to low-temperature stress, indicating that UBC13 is involved in plant response to low-temperature stress. Furthermore, the ubc13 mutant displayed low-temperature-induced and salicylic acid-dependent lesion mimic phenotypes. Unlike typical lesion mimic mutants, ubc13 did not enhance disease resistance against virulent bacterial and fungal pathogens, but diminished hypersensitive response and compromised effector-triggered immunity against avirulent bacterial pathogens. UBC13 differently regulates two types of programmed cell death in response to low temperature and pathogen. The lesion mimic phenotype in the ubc13 mutant is partially dependent on SNC1. UBC13 interacts with an F-box protein CPR1 that regulates the homeostasis of SNC1. However, the SNC1 protein level was not altered in the ubc13 mutant, implying that UBC13 is not involved in CPR1-regulated SNC1 protein degradation. Taken together, our results revealed that UBC13 is a key regulator in plant response to low temperature and pathogens.


Subject(s)
Apoptosis , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Plant Diseases/immunology , Ubiquitin-Conjugating Enzymes/metabolism , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Cold Temperature , Disease Resistance , F-Box Proteins/genetics , F-Box Proteins/metabolism , Gene Expression Regulation, Plant , Genes, Reporter , Phenotype , Salicylic Acid/metabolism , Stress, Physiological , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitination
9.
PLoS One ; 13(11): e0207036, 2018.
Article in English | MEDLINE | ID: mdl-30403737

ABSTRACT

Fusarium head blight (FHB or scab) caused by Fusarium spp. is a destructive disease of wheat. Since the most effective sources of FHB resistance are typically associated with unfavorable agronomic traits, breeding commercial cultivars that combine desired agronomic traits and a high level of FHB resistance remains a considerable challenge. A better understanding of the molecular mechanisms governing FHB resistance will help to design more efficient and precise breeding strategies. Here, multiple molecular tools and assays were deployed to compare the resistant variety Sumai3 with three regionally adapted Canadian cultivars. Macroscopic and microscopic disease evaluation established the relative level of Type II FHB resistance of the four varieties and revealed that the F. graminearum infection process displayed substantial temporal differences among organs. The rachis was found to play a critical role in preventing F. graminearum spread within spikes. Large-scale, organ-specific RNA-seq at different times after F. graminearum infection demonstrated that diverse defense mechanisms were expressed faster and more intensely in the spikelet of resistant varieties. The roles of plant hormones during the interaction of wheat with F. graminearum was inferred based on the transcriptomic data obtained and the quantification of the major plant hormones. Salicylic acid and jasmonic acid were found to play predominantly positive roles in FHB resistance, whereas auxin and ABA were associated with susceptibility, and ethylene appeared to play a dual role during the interaction with F graminearum.


Subject(s)
Disease Resistance/genetics , Fusarium/pathogenicity , Plant Diseases/microbiology , Plant Growth Regulators/metabolism , Transcriptome , Triticum/microbiology , Abscisic Acid/metabolism , Cyclopentanes/metabolism , Ethylenes/metabolism , Fusarium/isolation & purification , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Oxylipins/metabolism , Plant Diseases/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Principal Component Analysis , RNA, Plant/chemistry , RNA, Plant/metabolism , Salicylic Acid/metabolism , Sequence Analysis, RNA , Triticum/growth & development
10.
PLoS One ; 13(10): e0204362, 2018.
Article in English | MEDLINE | ID: mdl-30307951

ABSTRACT

Breeding for Fusarium head blight (FHB) resistance in durum wheat is complicated by the quantitative trait expression and narrow genetic diversity of available resources. High-density mapping of the FHB resistance quantitative trait loci (QTL), evaluation of their co-localization with plant height and maturity QTL and the interaction among the identified QTL are the objectives of this study. Two doubled haploid (DH) populations, one developed from crosses between Triticum turgidum ssp. durum lines DT707 and DT696 and the other between T. turgidum ssp. durum cv. Strongfield and T. turgidum ssp. carthlicum cv. Blackbird were genotyped using the 90K Infinium iSelect chip and evaluated phenotypically at multiple field FHB nurseries over years. A moderate broad-sense heritability indicated a genotype-by-environment interaction for the expression of FHB resistance in both populations. Resistance QTL were identified for the DT707 × DT696 population on chromosomes 1B, 2B, 5A (two loci) and 7A and for the Strongfield × Blackbird population on chromosomes 1A, 2A, 2B, 3A, 6A, 6B and 7B with the QTL on chromosome 1A and those on chromosome 5A being more consistently expressed over environments. FHB resistance co-located with plant height and maturity QTL on chromosome 5A and with a maturity QTL on chromosome 7A for the DT707 × DT696 population. Resistance also co-located with plant height QTL on chromosomes 2A and 3A and with maturity QTL on chromosomes 1A and 7B for the Strongfield × Blackbird population. Additive × additive interactions were identified, for example between the two FHB resistance QTL on chromosome 5A for the DT707 × DT696 population and the FHB resistance QTL on chromosomes 1A and 7B for the Strongfield × Blackbird population. Application of the Single Nucleotide Polymorphic (SNP) markers associated with FHB resistance QTL identified in this study will accelerate combining genes from the two populations.


Subject(s)
Disease Resistance/genetics , Fusarium , Plant Diseases/genetics , Triticum/genetics , Chromosome Mapping , Chromosomes, Plant , Crops, Agricultural/anatomy & histology , Crops, Agricultural/genetics , Phenotype , Plant Breeding , Quantitative Trait Loci , Species Specificity , Triticum/anatomy & histology
11.
BMC Plant Biol ; 17(1): 45, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28202046

ABSTRACT

BACKGROUND: Lr16 is a widely deployed leaf rust resistance gene in wheat (Triticum aestivum L.) that is highly effective against the North American Puccinia triticina population when pyramided with the gene Lr34. Lr16 is a seedling leaf rust resistance gene conditioning an incompatible interaction with a distinct necrotic ring surrounding the uredinium. Lr16 was previously mapped to the telomeric region of the short arm of wheat chromosome 2B. The goals of this study were to develop numerous single nucleotide polymorphism (SNP) markers for the Lr16 region and identify diagnostic gene-specific SNP marker assays for marker-assisted selection (MAS). RESULTS: Forty-three SNP markers were developed and mapped on chromosome 2BS tightly linked with the resistance gene Lr16 across four mapping populations representing a total of 1528 gametes. Kompetitive Allele Specific PCR (KASP) assays were designed for all identified SNPs. Resistance gene analogs (RGAs) linked with the Lr16 locus were identified and RGA-based SNP markers were developed. The diagnostic potential of the SNPs co-segregating with Lr16 was evaluated in a diverse set of 133 cultivars and breeding lines. Six SNP markers were consistent with the Lr16 phenotype and are accurately predictive of Lr16 for all wheat lines/cultivars in the panel. CONCLUSIONS: Lr16 was mapped relative to SNP markers in four populations. Six SNP markers exhibited high quality clustering in the KASP assay and are suitable for MAS of Lr16 in wheat breeding programs.


Subject(s)
Plant Diseases/genetics , Plant Proteins/genetics , Polymorphism, Single Nucleotide , Triticum/genetics , Triticum/microbiology , Basidiomycota/pathogenicity , Chromosome Mapping , Disease Resistance/genetics , Genetic Markers , Haplotypes , Phenotype , Plant Diseases/microbiology , Seedlings/genetics , Seedlings/microbiology
12.
Front Microbiol ; 7: 910, 2016.
Article in English | MEDLINE | ID: mdl-27445995

ABSTRACT

Fusarium head blight (FHB) is a serious disease of wheat worldwide. Cultivar resistance to FHB depends on biochemical factors that confine the pathogen spread in spikes. Breeding for cultivar resistance is considered the most practical way to manage this disease. In this study, different spectroscopy and microscopy techniques were applied to discriminate resistance in wheat genotypes against FHB. Synchrotron-based spectroscopy and imaging techniques, including focal plane array infrared and X-ray fluorescence (XRF) spectroscopy were used to understand changes in biochemical and nutrients in rachis following FHB infection. Sumai3 and Muchmore were used to represent resistant and susceptible cultivars to FHB, respectively, in this study. The histological comparison of rachis showed substantial differences in the cell wall thickness between the cultivars after infection. Synchrotron-based infrared imaging emphasized substantial difference in biochemical composition of rachis samples between the two cultivars prior to visible symptoms; in the resistant Sumai3, infrared bands representing lignin and hemicellulose were stronger and more persistent compared to the susceptible cultivar. These bands may be the candidates of biochemical markers for FHB resistance. Focal plane array infrared imaging (FPA) spectra from the rachis epidermis and vascular bundles revealed a new band (1710 cm(-1)) related to the oxidative stress on the susceptible cultivar only. XRF spectroscopy data revealed differences in nutrients composition between cultivars, and between controls and inoculated samples, with substantial increases observed for Ca, K, Mn, Fe, Zn, and Si in the resistant cultivar. These nutrients are related to cell wall stability, metabolic process, and plant defense mechanisms such as lignification pathway and callose deposition. The combination of cell wall composition and lignification plays a role in the mechanism of type II host resistance to FHB. Biochemical profiling using the synchrotron-based spectroscopy holds potential for screening wheat genotypes for FHB resistance.

13.
Theor Appl Genet ; 129(8): 1507-17, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27160855

ABSTRACT

KEY MESSAGE: SNP markers were developed for the OWBM resistance gene Sm1 that will be useful for MAS. The wheat Sm1 region is collinear with an inverted syntenic interval in B. distachyon. Orange wheat blossom midge (OWBM, Sitodiplosis mosellana Géhin) is an important insect pest of wheat (Triticum aestivum) in many growing regions. Sm1 is the only described OWBM resistance gene and is the foundation of managing OWBM through host genetics. Sm1 was previously mapped to wheat chromosome arm 2BS relative to simple sequence repeat (SSR) markers and the dominant, sequence characterized amplified region (SCAR) marker WM1. The objectives of this research were to saturate the Sm1 region with markers, develop improved markers for marker-assisted selection (MAS), and examine the synteny between wheat, Brachypodium distachyon, and rice (Oryza sativa) in the Sm1 region. The present study mapped Sm1 in four populations relative to single nucleotide polymorphisms (SNPs), SSRs, Diversity Array Technology (DArT) markers, single strand conformation polymorphisms (SSCPs), and the SCAR WM1. Numerous high quality SNP assays were designed that mapped near Sm1. BLAST delineated the syntenic intervals in B. distachyon and rice using gene-based SNPs as query sequences. The Sm1 region in wheat was inverted relative to B. distachyon and rice, which suggests a chromosomal rearrangement within the Triticeae lineage. Seven SNPs were tested on a collection of wheat lines known to carry Sm1 and not to carry Sm1. Sm1-flanking SNPs were identified that were useful for predicting the presence or absence of Sm1 based upon haplotype. These SNPs will be a major improvement for MAS of Sm1 in wheat breeding programs.


Subject(s)
Chromosome Mapping , Genetic Linkage , Polymorphism, Single Nucleotide , Synteny , Triticum/genetics , Animals , Brachypodium/genetics , Chironomidae , DNA, Plant/genetics , Genes, Plant , Genetic Markers , Haplotypes , Oryza/genetics , Phenotype
14.
PLoS One ; 11(4): e0153642, 2016.
Article in English | MEDLINE | ID: mdl-27101152

ABSTRACT

Metabolic changes in spikelets of wheat varieties FL62R1, Stettler, Muchmore and Sumai3 following Fusarium graminearum infection were explored using NMR analysis. Extensive 1D and 2D 1H NMR measurements provided information for detailed metabolite assignment and quantification leading to possible metabolic markers discriminating resistance level in wheat subtypes. In addition, metabolic changes that are observed in all studied varieties as well as wheat variety specific changes have been determined and discussed. A new method for metabolite quantification from NMR data that automatically aligns spectra of standards and samples prior to quantification using multivariate linear regression optimization of spectra of assigned metabolites to samples' 1D spectra is described and utilized. Fusarium infection-induced metabolic changes in different wheat varieties are discussed in the context of metabolic network and resistance.


Subject(s)
Biomarkers/metabolism , Fusariosis/metabolism , Fusarium/metabolism , Triticum/microbiology , Proton Magnetic Resonance Spectroscopy
15.
BMC Plant Biol ; 15: 24, 2015 Jan 28.
Article in English | MEDLINE | ID: mdl-25628148

ABSTRACT

BACKGROUND: Fusarium head blight (FHB), a scab principally caused by Fusarium graminearum Schw., is a serious disease of wheat. The purpose of this study is to evaluate the potential of combining synchrotron based phase contrast X-ray imaging (PCI) with Fourier Transform mid infrared (FTIR) spectroscopy to understand the mechanisms of resistance to FHB by resistant wheat cultivars. Our hypothesis is that structural and biochemical differences between resistant and susceptible cultivars play a significant role in developing resistance to FHB. RESULTS: Synchrotron based PCI images and FTIR absorption spectra (4000-800 cm(-1)) of the floret and rachis from Fusarium-damaged and undamaged spikes of the resistant cultivar 'Sumai3', tolerant cultivar 'FL62R1', and susceptible cultivar 'Muchmore' were collected and analyzed. The PCI images show significant differences between infected and non-infected florets and rachises of different wheat cultivars. However, no pronounced difference between non-inoculated resistant and susceptible cultivar in terms of floret structures could be determined due to the complexity of the internal structures. The FTIR spectra showed significant variability between infected and non-infected floret and rachis of the wheat cultivars. The changes in absorption wavenumbers following pathogenic infection were mostly in the spectral range from 1800-800 cm(-1). The Principal Component Analysis (PCA) was also used to determine the significant chemical changes inside floret and rachis when exposed to the FHB disease stress to understand the plant response mechanism. In the floret and rachis samples, PCA of FTIR spectra revealed differences in cell wall related polysaccharides. In the florets, absorption peaks for Amide I, cellulose, hemicellulose and pectin were affected by the pathogenic fungus. In the rachis of the wheat cultivars, PCA underlines significant changes in pectin, cellulose, and hemicellulose characteristic absorption spectra. Amide II and lignin absorption peaks, persistent in the rachis of Sumai3, together with increased peak shift at 1245 cm(-1) after infection with FHB may be a marker for stress response in which the cell wall compounds related to pathways for lignification are increased. CONCLUSIONS: Synchrotron based PCI combined with FTIR spectroscopy show promising results related to FHB in wheat. The combined technique is a powerful new tool for internal visualisation and biomolecular monitoring before and during plant-microbe interactions to understand both the differences between cultivars and their different responses to disease stress.


Subject(s)
Disease Resistance , Fusarium/physiology , Plant Diseases/immunology , Spectroscopy, Fourier Transform Infrared/methods , Synchrotrons , Triticum/anatomy & histology , Triticum/microbiology , Green Fluorescent Proteins/metabolism , Plant Diseases/microbiology , Principal Component Analysis , X-Rays
16.
PLoS One ; 8(9): e77378, 2013.
Article in English | MEDLINE | ID: mdl-24086773

ABSTRACT

During the plant immune response, large-scale transcriptional reprogramming is modulated by numerous transcription (co) factors. The Arabidopsis basic leucine zipper transcription factors TGA1 and TGA4, which comprise the clade I TGA factors, have been shown to positively contribute to disease resistance against virulent strains of the bacterial pathogen Pseudomonas syringae. Despite physically interacting with the key immune regulator, NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1), following elicitation with salicylic acid (SA), clade I function was shown to be largely independent of NPR1. Unlike mutants in NPR1, tga1-1 tga4-1 plants do not display reductions in steady-state levels of SA-pathway marker genes following treatment with this phenolic signaling metabolite or after challenge with virulent or avirulent P. syringae. By exploiting bacterial strains that have limited capacity to suppress Arabidopsis defence responses, the present study demonstrates that tga1-1 tga4-1 plants are compromised in basal resistance and defective in several apoplastic defence responses, including the oxidative burst of reactive oxygen species, callose deposition, as well as total and apoplastic PATHOGENESIS-RELATED 1 (PR-1) protein accumulation. Furthermore, analysis of npr1-1 and the tga1-1 tga4-1 npr1-1 triple mutant indicates that clade I TGA factors act substantially independent of NPR1 in mediating disease resistance against these strains of P. syringae. Increased sensitivity to the N-glycosylation inhibitor tunicamycin and elevated levels of endoplasmic reticulum (ER) stress marker genes encoding ER-resident chaperones in mutant seedlings suggest that loss of apoplastic defence responses is associated with aberrant protein secretion and implicate clade I TGA factors as positive regulators of one or more ER-related secretion pathways.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/cytology , Arabidopsis/microbiology , Basic-Leucine Zipper Transcription Factors/metabolism , Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism , Pseudomonas syringae/physiology , Arabidopsis/immunology , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Basic-Leucine Zipper Transcription Factors/genetics , Glucans/metabolism , Mutation , Respiratory Burst , Unfolded Protein Response
17.
BMC Plant Biol ; 13: 170, 2013 Oct 29.
Article in English | MEDLINE | ID: mdl-24168327

ABSTRACT

BACKGROUND: HIGH-LEVEL EXPRESSION OF SUGAR INDUCIBLE GENE2 (HSI2), also known as VAL1, is a B3 domain transcriptional repressor that acts redundantly with its closest relative, HSI2-LIKE1 (HSL1), to suppress the seed maturation program following germination. Mutant hsi2 hsl1 seedlings are arrested early in development and differentially express a number of abiotic stress-related genes. To test the potential requirement for HSI2 during abiotic stress, hsi2 single mutants and plants overexpressing HSI2 were subjected to simulated drought stress by withholding watering, and characterized through physiological, metabolic and gene expression studies. RESULTS: The hsi2 mutants demonstrated reduced wilting and maintained higher relative water content than wild-type after withholding watering, while the overexpressing lines displayed the opposite phenotype. The hsi2 mutant displayed lower constitutive and ABA-induced stomatal conductance than wild-type and accumulated lower levels of ABA metabolites and several osmolytes and osmoprotectants following water withdrawal. Microarray comparisons between wild-type and the hsi2 mutant revealed that steady-state levels of numerous stress-induced genes were up-regulated in the mutant in the absence of stress but down-regulated at visible wilting. Plants with altered levels of HSI2 responded to exogenous application of ABA and a long-lived ABA analog, but the hsi2 mutant did not show altered expression of several ABA-responsive or ABA signalling genes 4 hr after application. CONCLUSIONS: These results implicate HSI2 as a negative regulator of drought stress response in Arabidopsis, acting, at least in part, by regulating transpirational water loss. Metabolic and global transcript profiling comparisons of the hsi2 mutant and wild-type plants do not support a model whereby the greater drought tolerance observed in the hsi2 mutant is conferred by the accumulation of known osmolytes and osmoprotectants. Instead, data are consistent with mutants experiencing a relatively milder dehydration stress following water withdrawal.


Subject(s)
Adaptation, Physiological , Arabidopsis Proteins/genetics , Arabidopsis/genetics , Arabidopsis/physiology , Droughts , Gene Expression Regulation, Plant , Repressor Proteins/genetics , Stress, Physiological , Abscisic Acid/pharmacology , Adaptation, Physiological/drug effects , Adaptation, Physiological/genetics , Arabidopsis/drug effects , Arabidopsis Proteins/metabolism , DNA, Bacterial/genetics , Down-Regulation/drug effects , Down-Regulation/genetics , Gene Expression Regulation, Plant/drug effects , Gene Ontology , Kinetics , Metabolome/drug effects , Metabolome/genetics , Molecular Sequence Annotation , Mutagenesis, Insertional/drug effects , Mutagenesis, Insertional/genetics , Mutation/genetics , Oligonucleotide Array Sequence Analysis , Plant Stomata/drug effects , Plant Stomata/genetics , Plant Stomata/physiology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Repressor Proteins/metabolism , Reproducibility of Results , Stress, Physiological/drug effects , Stress, Physiological/genetics , Transcriptome/genetics
18.
Front Plant Sci ; 4: 230, 2013.
Article in English | MEDLINE | ID: mdl-23847635

ABSTRACT

DIR1 is a lipid transfer protein (LTP) postulated to complex with and/or chaperone a signal(s) to distant leaves during Systemic Acquired Resistance (SAR) in Arabidopsis. DIR1 was detected in phloem sap-enriched petiole exudates collected from wild-type leaves induced for SAR, suggesting that DIR1 gains access to the phloem for movement from the induced leaf. Occasionally the defective in induced resistance1 (dir1-1) mutant displayed a partially SAR-competent phenotype and a DIR1-sized band in protein gel blots was detected in dir1-1 exudates suggesting that a highly similar protein, DIR1-like (At5g48490), may contribute to SAR. Recombinant protein studies demonstrated that DIR1 polyclonal antibodies recognize DIR1 and DIR1-like. Homology modeling of DIR1-like using the DIR1-phospholipid crystal structure as template, provides clues as to why the dir1-1 mutant is rarely SAR-competent. The contribution of DIR1 and DIR1-like during SAR was examined using an Agrobacterium-mediated transient expression-SAR assay and an estrogen-inducible DIR1-EGFP/dir1-1 line. We provide evidence that upon SAR induction, DIR1 moves down the leaf petiole to distant leaves. Our data also suggests that DIR1-like displays a reduced capacity to move to distant leaves during SAR and this may explain why dir1-1 is occasionally SAR-competent.

19.
Mol Plant Microbe Interact ; 25(11): 1459-68, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22876961

ABSTRACT

Transcriptional reprogramming during induction of salicylic acid (SA)-mediated defenses is regulated primarily by NPR1 (NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1), likely through interactions with TGA bZIP transcription factors. To ascertain the contributions of clade I TGA factors (TGA1 and TGA4) to defense responses, a tga1-1 tga4-1 double mutant was constructed and challenged with Pseudomonas syringae and Hyaloperonospora arabidopsidis. Although the mutant displayed enhanced susceptibility to virulent P. syringae, it was not compromised in systemic acquired resistance against this pathogen or resistance against avirulent H. arabidopsidis. Microarray analysis of nonelicited and SA-treated plants indicated that clade I TGA factors regulate fewer genes than NPR1. Approximately half of TGA-dependent genes were regulated by NPR1 but, in all cases, the direction of change was opposite in the two mutants. In support of the microarray data, the NPR1-independent disease resistance observed in the autoimmune resistance (R) gene mutant snc1 is partly compromised by tga1-1 tga4-1 mutations, and a triple mutant of clade I TGA factors with npr1-1 is more susceptible than either parent. These results suggest that clade I TGA factors are required for resistance against virulent pathogens and avirulent pathogens mediated by at least some R gene specificities, acting substantially through NPR1-independent pathways.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Arabidopsis/microbiology , Transcription Factors/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Plant Immunity , Pseudomonas syringae/pathogenicity , Transcription Factors/genetics
20.
Plant Physiol ; 154(3): 1492-504, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20805327

ABSTRACT

ROXY1 and ROXY2 are CC-type floral glutaredoxins with redundant functions in Arabidopsis (Arabidopsis thaliana) anther development. We show here that plants lacking the basic leucine-zipper transcription factors TGA9 and TGA10 have defects in male gametogenesis that are strikingly similar to those in roxy1 roxy2 mutants. In tga9 tga10 mutants, adaxial and abaxial anther lobe development is differentially affected, with early steps in anther development blocked in adaxial lobes and later steps affected in abaxial lobes. Distinct from roxy1 roxy2, microspore development in abaxial anther lobes proceeds to a later stage with the production of inviable pollen grains contained within nondehiscent anthers. Histological analysis shows multiple defects in the anther dehiscence program, including abnormal stability and lignification of the middle layer and defects in septum and stomium function. Compatible with these defects, TGA9 and TGA10 are expressed throughout early anther primordia but resolve to the middle and tapetum layers during meiosis of pollen mother cells. Several lines of evidence suggest that ROXY promotion of anther development is mediated in part by TGA9 and TGA10. First, TGA9 and TGA10 expression overlaps with ROXY1/2 during anther development. Second, TGA9/10 and ROXY1/2 operate downstream of SPOROCYTELESS/NOZZLE, where they positively regulate a common set of genes that contribute to tapetal development. Third, TGA9 and TGA10 directly interact with ROXY proteins in yeast and in plant cell nuclei. These findings suggest that activation of TGA9/10 transcription factors by ROXY-mediated modification of cysteine residues promotes anther development, thus broadening our understanding of how redox-regulated TGA factors function in plants.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Flowers/growth & development , Glutaredoxins/metabolism , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Basic-Leucine Zipper Transcription Factors/genetics , Gametogenesis, Plant , Gene Expression Regulation, Plant , Germination , Glutaredoxins/genetics , Molecular Sequence Data , Mutagenesis, Insertional , Mutation , Pollen/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...