Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Mater ; 20(9): 1221-1227, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33888904

ABSTRACT

The idea of employing non-Abelian statistics for error-free quantum computing ignited interest in reports of topological surface superconductivity and Majorana zero modes (MZMs) in FeTe0.55Se0.45. However, the topological features and superconducting properties are not observed uniformly across the sample surface. The understanding and practical control of these electronic inhomogeneities present a prominent challenge for potential applications. Here, we combine neutron scattering, scanning angle-resolved photoemission spectroscopy, and microprobe composition and resistivity measurements to characterize the electronic state of Fe1+yTe1-xSex. We establish a phase diagram in which the superconductivity is observed only at sufficiently low Fe concentration, in association with distinct antiferromagnetic correlations, whereas the coexisting topological surface state occurs only at sufficiently high Te concentration. We find that FeTe0.55Se0.45 is located very close to both phase boundaries, which explains the inhomogeneity of superconducting and topological states. Our results demonstrate the compositional control required for use of topological MZMs in practical applications.

2.
J Mater Chem A Mater ; 6(14): 5703-5713, 2018 Apr 14.
Article in English | MEDLINE | ID: mdl-30009023

ABSTRACT

Activating the O2 molecule is at the heart of a variety of technological applications, most prominently in energy conversion schemes including solid oxide fuel cells, electrolysis, and catalysis. Perovskite oxides, both traditionally-used and novel formulations, are the prime candidates in established and emerging energy devices. This work shows that the as-cleaved and unmodified CaO-terminated (001) surface of Ca3Ru2O7, a Ruddlesden-Popper perovskite, supports a full monolayer of superoxide ions, O2-, when exposed to molecular O2. The electrons for activating the molecule are transferred from the subsurface RuO2 layer. Theoretical calculations using both, density functional theory (DFT) and more accurate methods (RPA), predict the adsorption of O2- with Eads = 0.72 eV and provide a thorough analysis of the charge transfer. Non-contact atomic force microscopy (nc-AFM) and scanning tunnelling microscopy (STM) are used to resolve single molecules and confirm the predicted adsorption structures. Local contact potential difference (LCPD) and X-ray photoelectron spectroscopy (XPS) measurements on the full monolayer of O2- confirm the negative charge state of the molecules. The present study reports the rare case of an oxide surface without dopants, defects, or low-coordinated sites readily activating molecular O2.

3.
Nat Commun ; 8(1): 23, 2017 06 20.
Article in English | MEDLINE | ID: mdl-28634335

ABSTRACT

As complex ternary perovskite-type oxides are increasingly used in solid oxide fuel cells, electrolysis and catalysis, it is desirable to obtain a better understanding of their surface chemical properties. Here we report a pronounced ordering of hydroxyls on the cleaved (001) surface of the Ruddlesden-Popper perovskite Ca3Ru2O7 upon water adsorption at 105 K and subsequent annealing to room temperature. Density functional theory calculations predict the dissociative adsorption of a single water molecule (E ads = 1.64 eV), forming an (OH)ads group adsorbed in a Ca-Ca bridge site, with an H transferred to a neighboring surface oxygen atom, Osurf. Scanning tunneling microscopy images show a pronounced ordering of the hydroxyls with (2 × 1), c(2 × 6), (1 × 3), and (1 × 1) periodicity. The present work demonstrates the importance of octahedral rotation and tilt in perovskites, for influencing surface reactivity, which here induces the ordering of the observed OH overlayers.As ternary perovskite-type oxides are increasingly used in fuel cells and catalysis, greater understanding of their surface chemical properties is required. Here the authors report a pronounced ordering of hydroxyls on the cleaved (001) surface of Ca3Ru2O7 perovskite induced by O-octahedral rotation and tilt.

4.
Nat Mater ; 15(4): 450-455, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26689138

ABSTRACT

Although perovskite oxides hold promise in applications ranging from solid oxide fuel cells to catalysts, their surface chemistry is poorly understood at the molecular level. Here we follow the formation of the first monolayer of water at the (001) surfaces of Sr(n+1)Ru(n)O3(n+1) (n = 1, 2) using low-temperature scanning tunnelling microscopy, X-ray photoelectron spectroscopy, and density functional theory. These layered perovskites cleave between neighbouring SrO planes, yielding almost ideal, rocksalt-like surfaces. An adsorbed monomer dissociates and forms a pair of hydroxide ions. The OH stemming from the original molecule stays trapped at Sr-Sr bridge positions, circling the surface OH with a measured activation energy of 187 ± 10 meV. At higher coverage, dimers of dissociated water assemble into one-dimensional chains and form a percolating network where water adsorbs molecularly in the gaps. Our work shows the limitations of applying surface chemistry concepts derived for binary rocksalt oxides to perovskites.

5.
Phys Rev Lett ; 113(11): 116101, 2014 Sep 12.
Article in English | MEDLINE | ID: mdl-25259988

ABSTRACT

Adsorption of CO at the Sr(3)Ru(2)O(7)(001) surface was studied with low-temperature scanning tunneling microscopy (STM) and density functional theory. In situ cleaved single crystals terminate in an almost perfect SrO surface. At 78 K, CO first populates impurities and then adsorbs above the apical surface O with a binding energy E(ads)=-0.7 eV. Above 100 K, this physisorbed CO replaces the surface O, forming a bent CO(2) with the C end bound to the Ru underneath. The resulting metal carboxylate (Ru-COO) can be desorbed by STM manipulation. A low activation (0.2 eV) and high binding (-2.2 eV) energy confirm a strong reaction between CO and regular surface sites of Sr(3)Ru(2)O(7); likely, this reaction causes the "UHV aging effect" reported for this and other perovskite oxides.

6.
ACS Nano ; 8(7): 7531-7, 2014 Jul 22.
Article in English | MEDLINE | ID: mdl-24945923

ABSTRACT

The atomic-scale mechanisms underlying the growth of Ag on the (√2×√2)R45°-Fe3O4(001) surface were studied using scanning tunneling microscopy and density functional theory based calculations. For coverages up to 0.5 ML, Ag adatoms populate the surface exclusively; agglomeration into nanoparticles occurs only with the lifting of the reconstruction at 720 K. Above 0.5 ML, Ag clusters nucleate spontaneously and grow at the expense of the surrounding material with mild annealing. This unusual behavior results from a kinetic barrier associated with the (√2×√2)R45° reconstruction, which prevents adatoms from transitioning to the thermodynamically favorable 3D phase. The barrier is identified as the large separation between stable adsorption sites, which prevents homogeneous cluster nucleation and the instability of the Ag dimer against decay to two adatoms. Since the system is dominated by kinetics as long as the (√2×√2)R45° reconstruction exists, the growth is not well described by the traditional growth modes. It can be understood, however, as the result of supersaturation within an adsorption template system.

7.
Phys Rev Lett ; 112(18): 187202, 2014 May 09.
Article in English | MEDLINE | ID: mdl-24856717

ABSTRACT

Fe(1+y)Te with y≲0.05 exhibits a first-order phase transition on cooling to a state with a lowered structural symmetry, bicollinear antiferromagnetic order, and metallic conductivity, dρ/dT>0. Here, we study samples with y=0.09(1), where the frustration effects of the interstitial Fe decouple different orders, leading to a sequence of transitions. While the lattice distortion is closely followed by incommensurate magnetic order, the development of bicollinear order and metallic electronic coherence is uniquely associated with a separate hysteretic first-order transition, at a markedly lower temperature, to a phase with dramatically enhanced bond-order wave (BOW) order. The BOW state suggests ferro-orbital ordering, where electronic delocalization in ferromagnetic zigzag chains decreases local spin and results in metallic transport.

SELECTION OF CITATIONS
SEARCH DETAIL
...