Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Heart Rhythm ; 18(7): 1212-1220, 2021 07.
Article in English | MEDLINE | ID: mdl-33737232

ABSTRACT

BACKGROUND: Although atrial fibrillation ablation is increasingly used for rhythm control therapy, antiarrhythmic drugs (AADs) are commonly used, either alone or in combination with ablation. The effectiveness of AADs is highly variable. Previous work from our group suggests that alterations in atrial resting membrane potential (RMP) induced by low Pitx2 expression could explain the variable effect of flecainide. OBJECTIVE: The purpose of this study was to assess whether alterations in atrial/cardiac RMP modify the effectiveness of multiple clinically used AADs. METHODS: The sodium channel blocking effects of propafenone (300 nM, 1 µM), flecainide (1 µM), and dronedarone (5 µM, 10 µM) were measured in human stem cell-derived cardiac myocytes, HEK293 expressing human NaV1.5, primary murine atrial cardiac myocytes, and murine hearts with reduced Pitx2c. RESULTS: A more positive atrial RMP delayed INa recovery, slowed channel inactivation, and decreased peak action potential (AP) upstroke velocity. All 3 AADs displayed enhanced sodium channel block at more positive atrial RMPs. Dronedarone was the most sensitive to changes in atrial RMP. Dronedarone caused greater reductions in AP amplitude and peak AP upstroke velocity at more positive RMPs. Dronedarone evoked greater prolongation of the atrial effective refractory period and postrepolarization refractoriness in murine Langendorff-perfused Pitx2c+/- hearts, which have a more positive RMP compared to wild type. CONCLUSION: Atrial RMP modifies the effectiveness of several clinically used AADs. Dronedarone is more sensitive to changes in atrial RMP than flecainide or propafenone. Identifying and modifying atrial RMP may offer a novel approach to enhancing the effectiveness of AADs or personalizing AAD selection.


Subject(s)
Atrial Fibrillation/metabolism , Dronedarone/therapeutic use , Flecainide/therapeutic use , Heart Atria/metabolism , Membrane Potentials/drug effects , Propafenone/therapeutic use , Sodium/metabolism , Action Potentials/drug effects , Animals , Anti-Arrhythmia Agents/therapeutic use , Atrial Fibrillation/drug therapy , Atrial Fibrillation/physiopathology , Disease Models, Animal , Female , Heart Atria/physiopathology , Male , Mice , Voltage-Gated Sodium Channel Blockers/therapeutic use
2.
J Vis Exp ; (148)2019 06 04.
Article in English | MEDLINE | ID: mdl-31233017

ABSTRACT

Optical mapping is an established technique for high spatio-temporal resolution study of cardiac electrophysiology in multi-cellular preparations. Here we present, in a step-by-step guide, the use of ElectroMap for analysis, quantification, and mapping of high-resolution voltage and calcium datasets acquired by optical mapping. ElectroMap analysis options cover a wide variety of key electrophysiological parameters, and the graphical user interface allows straightforward modification of pre-processing and parameter definitions, making ElectroMap applicable to a wide range of experimental models. We show how built-in pacing frequency detection and signal segmentation allows high-throughput analysis of entire experimental recordings, acute responses, and single beat-to-beat variability. Additionally, ElectroMap incorporates automated multi-beat averaging to improve signal quality of noisy datasets, and here we demonstrate how this feature can help elucidate electrophysiological changes that might otherwise go undetected when using single beat analysis. Custom modules are included within the software for detailed investigation of conduction, single file analysis, and alternans, as demonstrated here. This software platform can be used to enable and accelerate the processing, analysis, and mapping of complex cardiac electrophysiology.


Subject(s)
Atrial Function/physiology , Cardiac Electrophysiology , Electrophysiological Phenomena , Ventricular Function/physiology , Animals , Guinea Pigs , Heart Atria , Heart Rate , Heart Ventricles , Image Processing, Computer-Assisted , Mice , Software
3.
Front Physiol ; 8: 95, 2017.
Article in English | MEDLINE | ID: mdl-28293195

ABSTRACT

Tardigrades are microscopic aquatic animals renowned for their tolerance toward extreme environmental conditions. The current study is the first to investigate their tolerance toward heavy metals and we present a novel tardigrade toxicant tolerance assay based on activity assessments as a measure of survival. Specifically, we compare tolerance toward copper in four species representing different evolutionary lineages, habitats and adaptation strategies, i.e., a marine heterotardigrade, Echiniscoides sigismundi, a limno-terrestrial heterotardigrade, Echiniscus testudo, a limno-terrestrial eutardigrade, Ramazzottius oberhaeuseri, and a marine eutardigrade, Halobiotus crispae. The latter was sampled at a time of year, when the population is predominantly represented by aberrant P1 cysts, while the other species were in normal active states prior to exposure. Based on volume measurements and a general relation between body mass and copper tolerance, expected tardigrade EC50 values were estimated at 0.5-2 µg l-1. Following 24 h of exposure, tolerance was high with no apparent link to lineage or habitat. EC50s (95% CI), 24 h after exposure, were estimated at 178 (168-186) and 310 (295-328) µg l-1, respectively, for E. sigismundi and R. oberhaeuseri, whereas E. testudo and H. crispae were less affected. Highest tolerance was observed in H. crispae with a mean ± s.e.m. activity of 77 ± 2% (n = 3) 24 h after removal from ~3 mg l-1 copper, suggesting that tardigrade cysts have increased tolerance toward toxicants. In order to identify putative tolerance related genes, an E. sigismundi transcriptome was searched for key enzymes involved in osmoregulation, antioxidant defense and copper metabolism. We found high expression of Na/K ATPase and carbonic anhydrase, known targets for copper. Our transcriptome, furthermore, revealed high expression of antioxidant enzymes, copper transporters, ATOX1, and a Cu-ATPase. In summary, our results indicate that tardigrades express well-known key osmoregulatory enzymes, supporting the hypothesis that copper inhibits sodium turnover as demonstrated for other aquatic organisms. Tardigrades, nevertheless, have high tolerance toward the toxicant, which is likely linked to high expression of antioxidant enzymes and an ability to enter dormant states. Tardigrades, furthermore, seem to have a well-developed battery of cuproproteins involved in copper homeostasis, providing basis for active copper sequestering and excretion.

4.
J Exp Biol ; 217(Pt 22): 3958-61, 2014 Nov 15.
Article in English | MEDLINE | ID: mdl-25267848

ABSTRACT

To evaluate whether the 'oxygen and capacity limited thermal tolerance' model (OCLTT) applies to an air-breathing ectothermic vertebrate, we measured oxygen uptake (V̇(O2)), cardiac performance and arterial blood gases during a progressive rise of temperature from 30 to 40°C in the snake Python regius. V̇(O2) of fasting snakes increased exponentially with temperature whereas V̇(O2) of digesting snakes at high temperatures plateaued at a level 3- to 4-fold above fasting. The high and sustained aerobic metabolism over the entire temperature range was supported by pronounced tachycardia at all temperatures, and both fasting and digesting snakes maintained a normal acid-base balance without any indication of anaerobic metabolism. All snakes also maintained high arterial PO2, even at temperatures close to the upper lethal temperature. Thus, there is no evidence of a reduced capacity for oxygen transport at high temperatures in either fasting or digesting snakes, suggesting that the upper thermal tolerance of this species is limited by other factors.


Subject(s)
Acid-Base Equilibrium , Boidae/metabolism , Hot Temperature , Oxygen/blood , Respiratory Transport , Animals , Digestion/physiology , Fasting , Heart Rate , Oxygen Consumption , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...