Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pharmacol ; 14: 1272091, 2023.
Article in English | MEDLINE | ID: mdl-38239195

ABSTRACT

Introduction: Understanding drug exposure at disease target sites is pivotal to profiling new drug candidates in terms of tolerability and efficacy. Such quantification is particularly tedious for anti-tuberculosis (TB) compounds as the heterogeneous pulmonary microenvironment due to the infection may alter lung permeability and affect drug disposition. Murine models have been a longstanding support in TB research so far and are here used as human surrogates to unveil the distribution of several anti-TB compounds at the site-of-action via a novel and centralized PBPK design framework. Methods: As an intermediate approach between data-driven pharmacokinetic (PK) models and whole-body physiologically based (PB) PK models, we propose a parsimonious framework for PK investigation (minimal PBPK approach) that retains key physiological processes involved in TB disease, while reducing computational costs and prior knowledge requirements. By lumping together pulmonary TB-unessential organs, our minimal PBPK model counts 9 equations compared to the 36 of published full models, accelerating the simulation more than 3-folds in Matlab 2022b. Results: The model has been successfully tested and validated against 11 anti-TB compounds-rifampicin, rifapentine, pyrazinamide, ethambutol, isoniazid, moxifloxacin, delamanid, pretomanid, bedaquiline, OPC-167832, GSK2556286 - showing robust predictability power in recapitulating PK dynamics in mice. Structural inspections on the proposed design have ensured global identifiability and listed free fraction in plasma and blood-to-plasma ratio as top sensitive parameters for PK metrics. The platform-oriented implementation allows fast comparison of the compounds in terms of exposure and target attainment. Discrepancies in plasma and lung levels for the latest BPaMZ and HPMZ regimens have been analyzed in terms of their impact on preclinical experiment design and on PK/PD indices. Conclusion: The framework we developed requires limited drug- and species-specific information to reconstruct accurate PK dynamics, delivering a unified viewpoint on anti-TB drug distribution at the site-of-action and a flexible fit-for-purpose tool to accelerate model-informed drug design pipelines and facilitate translation into the clinic.

2.
Vaccines (Basel) ; 10(8)2022 Aug 20.
Article in English | MEDLINE | ID: mdl-36016247

ABSTRACT

Standard-dose quadrivalent influenza vaccines (QIV) are designed to provide protection against all four influenza strains. Adjuvanted QIV (aQIV), indicated for individuals aged 65+ years, combines MF59® adjuvant (an oil-in-water emulsion of squalene oil) with a standard dose of antigen, and is designed to produce stronger and longer immune response, especially in the elderly where immunosenescence reduces vaccine effectiveness. This study evaluated the cost-effectiveness of aQIV vs. egg-based standard-dose QIV (QIVe) in the elderly population, from the payer and societal perspective in Spain. A dynamic transmission model, which accounts for herd protection, was used to predict the number of medically attended infections in Spain. A decision tree structure was used to forecast influenza-related costs and benefits. Influenza-related probabilities of outpatient visit, hospitalization, work absenteeism, mortality, and associated utilities and costs were extracted from Spanish and European published literature. Relative vaccine effectiveness (rVE) was sourced from two different meta-analyses: the first meta-analysis was informed by laboratory-confirmed influenza studies only, resulting in a rVE = 34.6% (CI95% 2-66%) in favor of aQIV; the second meta-analysis included real world evidence influenza-related medical encounters outcomes, resulting in a rVE = 13.9% (CI95% 4.2-23.5%) in benefit of aQIV. All costs were expressed in 2021 euros. Results indicate that replacing QIVe with aQIV in the Spanish elderly population would prevent on average 43,664 influenza complicated cases, 1111 hospitalizations, and 569 deaths (with a rVE = 34.6%) or 19,104 influenza complicated cases, 486 hospitalizations, and 252 deaths (with a rVE = 13.9%). When the rVE of aQIV vs. QIVe is 34.6%, the incremental cost per quality adjusted life years (QALY) gained was €2240 from the payer; from the societal perspective, aQIV was cost saving compared with QIVe. If the rVE was 13.9%, the incremental cost per QALY was €6694 and €3936 from the payer and societal perspective, respectively. Sensitivity analyses validated the robustness of these findings. Results indicate that replacing QIVe with aQIV in the Spanish elderly population is a cost-effective strategy for the Spanish healthcare system.

3.
Biology (Basel) ; 10(4)2021 Apr 08.
Article in English | MEDLINE | ID: mdl-33917920

ABSTRACT

Late 2019 saw the outbreak of COVID-19, a respiratory disease caused by the new coronavirus SARS-CoV-2, which rapidly turned into a pandemic, killing more than 2.77 million people and infecting more than 126 million as of late March 2021. Daily collected data on infection cases and hospitalizations informed decision makers on the ongoing pandemic emergency, enabling the design of diversified countermeasures, from behavioral policies to full lockdowns, to curb the virus spread. In this context, mechanistic models could represent valuable tools to optimize the timing and stringency of interventions, and to reveal non-trivial properties of the pandemic dynamics that could improve the design of suitable guidelines for future epidemics. We performed a retrospective analysis of the Italian epidemic evolution up to mid-December 2020 to gain insight into the main characteristics of the original strain of SARS-CoV-2, prior to the emergence of new mutations and the vaccination campaign. We defined a time-varying optimization procedure to calibrate a refined version of the SIDARTHE (Susceptible, Infected, Diagnosed, Ailing, Recognized, Threatened, Healed, Extinct) model and hence accurately reconstruct the epidemic trajectory. We then derived additional features of the COVID-19 pandemic in Italy not directly retrievable from reported data, such as the estimate of the day zero of infection in late November 2019 and the estimate of the spread of undetected infection. The present analysis contributes to a better understanding of the past pandemic waves, confirming the importance of epidemiological modeling to support an informed policy design against epidemics to come.

4.
Entropy (Basel) ; 22(10)2020 Sep 26.
Article in English | MEDLINE | ID: mdl-33286853

ABSTRACT

Recent technological and computational advances have enabled the collection of data at an unprecedented rate. On the one hand, the large amount of data suddenly available has opened up new opportunities for new data-driven research but, on the other hand, it has brought into light new obstacles and challenges related to storage and analysis limits. Here, we strengthen an upscaling approach borrowed from theoretical ecology that allows us to infer with small errors relevant patterns of a dataset in its entirety, although only a limited fraction of it has been analysed. In particular we show that, after reducing the input amount of information on the system under study, by applying our framework it is still possible to recover two statistical patterns of interest of the entire dataset. Tested against big ecological, human activity and genomics data, our framework was successful in the reconstruction of global statistics related to both the number of types and their abundances while starting from limited presence/absence information on small random samples of the datasets. These results pave the way for future applications of our procedure in different life science contexts, from social activities to natural ecosystems.

SELECTION OF CITATIONS
SEARCH DETAIL
...