Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Am J Med Genet A ; 182(10): 2272-2283, 2020 10.
Article in English | MEDLINE | ID: mdl-32776697

ABSTRACT

Synaptotagmins are integral synaptic vesicle membrane proteins that function as calcium sensors and regulate neurotransmitter release at the presynaptic nerve terminal. Synaptotagmin-2 (SYT2), is the major isoform expressed at the neuromuscular junction. Recently, dominant missense variants in SYT2 have been reported as a rare cause of distal motor neuropathy and myasthenic syndrome, manifesting with stable or slowly progressive distal weakness of variable severity along with presynaptic NMJ impairment. These variants are thought to have a dominant-negative effect on synaptic vesicle exocytosis, although the precise pathomechanism remains to be elucidated. Here we report seven patients of five families, with biallelic loss of function variants in SYT2, clinically manifesting with a remarkably consistent phenotype of severe congenital onset hypotonia and weakness, with variable degrees of respiratory involvement. Electrodiagnostic findings were consistent with a presynaptic congenital myasthenic syndrome (CMS) in some. Treatment with an acetylcholinesterase inhibitor pursued in three patients showed clinical improvement with increased strength and function. This series further establishes SYT2 as a CMS-disease gene and expands its clinical and genetic spectrum to include recessive loss-of-function variants, manifesting as a severe congenital onset presynaptic CMS with potential treatment implications.


Subject(s)
Genetic Predisposition to Disease , Muscle Hypotonia/genetics , Myasthenic Syndromes, Congenital/genetics , Synaptotagmin II/genetics , Adolescent , Child , Child, Preschool , Female , Humans , Male , Muscle Hypotonia/complications , Muscle Hypotonia/pathology , Muscle Weakness/genetics , Muscle Weakness/pathology , Mutation, Missense/genetics , Myasthenic Syndromes, Congenital/complications , Myasthenic Syndromes, Congenital/pathology , Pedigree , Phenotype , Synaptic Transmission/genetics
2.
Clin Genet ; 96(2): 126-133, 2019 08.
Article in English | MEDLINE | ID: mdl-30919934

ABSTRACT

In this retrospective study, we conducted a clinico-genetic analysis of patients with autosomal recessive limb-girdle muscular dystrophy (LGMD) and Miyoshi muscular dystrophy (MMD). Patients were identified at the tertiary referral centre for DNA diagnosis in the Netherlands and included if they carried two mutations in CAPN3, DYSF, SGCG, SGCA, SGCB, SGCD, TRIM32, FKRP or ANO5 gene. DNA was screened by direct sequencing and multiplex ligand-dependent probe amplification (MLPA) analysis. A total of 244 patients was identified; 68 LGMDR1/LGMD2A patients with CAPN3 mutations (28%), 67 sarcoglycanopathy patients (LGMDR3-5/LGMD2C-E) (27%), 64 LGMDR12/LGMD2L and MMD3 patients with ANO5 mutations (26%), 25 LGMDR2/LGMD2B and MMD1 with DYSF mutations (10%), 21 LGMDR9/LGMD2I with FKRP mutations (9%) and one LGMDR8/LGMD2H patient with TRIM32 mutations (<1%). The estimated minimum prevalence of AR-LGMD and MMD in the Netherlands amounted to 14.4 × 10-6 . Thirty-three novel mutations were identified. A wide range in age of onset (0-72 years) and loss of ambulation (5-74 years) was found. Fifteen patients (6%) initially presented with asymptomatic hyperCKemia. Cardiac abnormalities were found in 35 patients (17%). Non-invasive ventilation was started in 34 patients (14%). Both cardiac and respiratory involvement occurs across all subtypes, stressing the need for screening in all included subtypes.


Subject(s)
Genetic Predisposition to Disease , Muscular Dystrophies, Limb-Girdle/epidemiology , Muscular Dystrophies, Limb-Girdle/genetics , Alleles , Biomarkers , Biopsy , Female , Genetic Association Studies , Humans , Male , Muscular Dystrophies, Limb-Girdle/diagnosis , Netherlands/epidemiology , Phenotype , Population Surveillance , Retrospective Studies
3.
Crit Rev Oncol Hematol ; 104: 30-41, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27263935

ABSTRACT

Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder, associated with a variable clinical phenotype including café-au-lait spots, intertriginous freckling, Lisch nodules, neurofibromas, optic pathway gliomas and distinctive bony lesions. NF1 is caused by a mutation in the NF1 gene, which codes for neurofibromin, a large protein involved in the MAPK- and the mTOR-pathway through RAS-RAF signalling. NF1 is a known tumour predisposition syndrome, associated with different tumours of the nervous system including low grade gliomas (LGGs) in the paediatric population. The focus of this review is on grade I pilocytic astrocytomas (PAs), the most commonly observed histologic subtype of low grade gliomas in NF1. Clinically, these PAs have a better prognosis and show different localisation patterns than their sporadic counterparts, which are most commonly associated with a KIAA1549:BRAF fusion. In this review, possible mechanisms of tumourigenesis in LGGs with and without NF1 will be discussed, including the contribution of different signalling pathways and tumour microenvironment. Furthermore we will discuss how increased understanding of tumourigenesis may lead to new potential targets for treatment.


Subject(s)
Glioma/etiology , Neurofibromatosis 1/complications , Animals , Glioma/diagnosis , Humans , Mutation , Neoplasm Grading , Phenotype , Signal Transduction , Tumor Microenvironment
4.
Neuromuscul Disord ; 23(6): 461-8, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23566544

ABSTRACT

Spinal muscular atrophy with respiratory distress type 1 is an autosomal recessive disorder with early respiratory difficulties, distal muscle weakness, and contractures leading to foot deformities as the most striking clinical symptoms. Mutations of the gene encoding the immunoglobulin heavy chain µ-binding protein 2, mapped on chromosome 11q13, are the cause of the disease. We present the clinical and mutational characteristics of ten patients in the Netherlands who showed considerable clinical variability; they carried six novel mutations, including a deletion of exon 2. However, there were no clear phenotype-genotype correlations.


Subject(s)
Muscle Weakness/genetics , Muscular Atrophy, Spinal/genetics , Mutation/genetics , Respiratory Distress Syndrome, Newborn/genetics , Spinal Muscular Atrophies of Childhood/genetics , Child, Preschool , Chromosome Mapping , Female , Genetic Predisposition to Disease/genetics , Humans , Infant , Male , Muscular Atrophy, Spinal/diagnosis , Netherlands , Respiratory Distress Syndrome, Newborn/diagnosis , Spinal Muscular Atrophies of Childhood/diagnosis , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...