Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Front Aging Neurosci ; 14: 854031, 2022.
Article in English | MEDLINE | ID: mdl-35431893

ABSTRACT

We undertook longitudinal ß-amyloid positron emission tomography (Aß-PET) imaging as a translational tool for monitoring of chronic treatment with the peroxisome proliferator-activated receptor gamma (PPARγ) agonist pioglitazone in Aß model mice. We thus tested the hypothesis this treatment would rescue from increases of the Aß-PET signal while promoting spatial learning and preservation of synaptic density. Here, we investigated longitudinally for 5 months PS2APP mice (N = 23; baseline age: 8 months) and App NL-G-F mice (N = 37; baseline age: 5 months) using Aß-PET. Groups of mice were treated with pioglitazone or vehicle during the follow-up interval. We tested spatial memory performance and confirmed terminal PET findings by immunohistochemical and biochemistry analyses. Surprisingly, Aß-PET and immunohistochemistry revealed a shift toward higher fibrillary composition of Aß-plaques during upon chronic pioglitazone treatment. Nonetheless, synaptic density and spatial learning were improved in transgenic mice with pioglitazone treatment, in association with the increased plaque fibrillarity. These translational data suggest that a shift toward higher plaque fibrillarity protects cognitive function and brain integrity. Increases in the Aß-PET signal upon immunomodulatory treatments targeting Aß aggregation can thus be protective.

2.
Theranostics ; 11(18): 8964-8976, 2021.
Article in English | MEDLINE | ID: mdl-34522221

ABSTRACT

Modulation of the innate immune system is emerging as a promising therapeutic strategy against Alzheimer's disease (AD). However, determinants of a beneficial therapeutic effect are ill-understood. Thus, we investigated the potential of 18 kDa translocator protein positron-emission-tomography (TSPO-PET) for assessment of microglial activation in mouse brain before and during chronic immunomodulation. Methods: Serial TSPO-PET was performed during five months of chronic microglia modulation by stimulation of the peroxisome proliferator-activated receptor (PPAR)-γ with pioglitazone in two different mouse models of AD (PS2APP, AppNL-G-F ). Using mixed statistical models on longitudinal TSPO-PET data, we tested for effects of therapy and sex on treatment response. We tested correlations of baseline with longitudinal measures of TSPO-PET, and correlations between PET results with spatial learning performance and ß-amyloid accumulation of individual mice. Immunohistochemistry was used to determine the molecular source of the TSPO-PET signal. Results: Pioglitazone-treated female PS2APP and AppNL-G-F mice showed attenuation of the longitudinal increases in TSPO-PET signal when compared to vehicle controls, whereas treated male AppNL-G-F mice showed the opposite effect. Baseline TSPO-PET strongly predicted changes in microglial activation in treated mice (R = -0.874, p < 0.0001) but not in vehicle controls (R = -0.356, p = 0.081). Reduced TSPO-PET signal upon pharmacological treatment was associated with better spatial learning despite higher fibrillar ß-amyloid accumulation. Immunohistochemistry confirmed activated microglia to be the source of the TSPO-PET signal (R = 0.952, p < 0.0001). Conclusion: TSPO-PET represents a sensitive biomarker for monitoring of immunomodulation and closely reflects activated microglia. Sex and pre-therapeutic assessment of baseline microglial activation predict individual immunomodulation effects and may serve for responder stratification.


Subject(s)
Alzheimer Disease/metabolism , Microglia/metabolism , Receptors, GABA/metabolism , Amyloid beta-Peptides/metabolism , Animals , Brain/diagnostic imaging , Brain/metabolism , Disease Models, Animal , Female , Immunity, Innate/immunology , Immunomodulation/immunology , Immunomodulation/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , PPAR gamma/drug effects , PPAR gamma/metabolism , Pioglitazone/pharmacology , Positron-Emission Tomography/methods , Receptors, GABA/physiology , Sex Factors
3.
J Nucl Med ; 61(12): 1825-1831, 2020 12.
Article in English | MEDLINE | ID: mdl-32414948

ABSTRACT

Asymmetries of amyloid-ß (Aß) burden are well known in Alzheimer disease (AD) but did not receive attention in Aß mouse models of Alzheimer disease. Therefore, we investigated Aß asymmetries in Aß mouse models examined by Aß small-animal PET and tested if such asymmetries have an association with microglial activation. Methods: We analyzed 523 cross-sectional Aß PET scans of 5 different Aß mouse models (APP/PS1, PS2APP, APP-SL70, AppNL-G-F , and APPswe) together with 136 18-kDa translocator protein (TSPO) PET scans for microglial activation. The asymmetry index (AI) was calculated between tracer uptake in both hemispheres. AIs of Aß PET were analyzed in correlation with TSPO PET AIs. Extrapolated required sample sizes were compared between analyses of single and combined hemispheres. Results: Relevant asymmetries of Aß deposition were identified in at least 30% of all investigated mice. There was a significant correlation between AIs of Aß PET and TSPO PET in 4 investigated Aß mouse models (APP/PS1: R = 0.593, P = 0.001; PS2APP: R = 0.485, P = 0.019; APP-SL70: R = 0.410, P = 0.037; AppNL-G-F : R = 0.385, P = 0.002). Asymmetry was associated with higher variance of tracer uptake in single hemispheres, leading to higher required sample sizes. Conclusion: Asymmetry of fibrillar plaque neuropathology occurs frequently in Aß mouse models and acts as a potential confounder in experimental designs. Concomitant asymmetry of microglial activation indicates a neuroinflammatory component to hemispheric predominance of fibrillary amyloidosis.


Subject(s)
Amyloid beta-Peptides/chemistry , Plaque, Amyloid/metabolism , Protein Aggregates , Animals , Disease Models, Animal , Image Processing, Computer-Assisted , Mice , Mice, Inbred C57BL , Plaque, Amyloid/diagnostic imaging , Positron-Emission Tomography
4.
Cells ; 8(2)2019 01 28.
Article in English | MEDLINE | ID: mdl-30696113

ABSTRACT

Positron emission tomography (PET) ligands targeting the translocator protein (TSPO) represent promising tools to visualize neuroinflammation in multiple sclerosis (MS). Although it is known that TSPO is expressed in the outer mitochondria membrane, its cellular localization in the central nervous system under physiological and pathological conditions is not entirely clear. The purpose of this study was to assess the feasibility of utilizing PET imaging with the TSPO tracer, [18F]-GE180, to detect histopathological changes during experimental demyelination, and to determine which cell types express TSPO. C57BL/6 mice were fed with cuprizone for up to 5 weeks to induce demyelination. Groups of mice were investigated by [18F]-GE180 PET imaging at week 5. Recruitment of peripheral immune cells was triggered by combining cuprizone intoxication with MOG35⁻55 immunization (i.e., Cup/EAE). Immunofluorescence double-labelling and transgene mice were used to determine which cell types express TSPO. [18F]-GE180-PET reliably detected the cuprizone-induced pathology in various white and grey matter regions, including the corpus callosum, cortex, hippocampus, thalamus and caudoputamen. Cuprizone-induced demyelination was paralleled by an increase in TSPO expression, glia activation and axonal injury. Most of the microglia and around one-third of the astrocytes expressed TSPO. TSPO expression induction was more severe in the white matter corpus callosum compared to the grey matter cortex. Although mitochondria accumulate at sites of focal axonal injury, these mitochondria do not express TSPO. In Cup/EAE mice, both microglia and recruited monocytes contribute to the TSPO expressing cell populations. These findings support the notion that TSPO is a valuable marker for the in vivo visualization and quantification of neuropathological changes in the MS brain. The pathological substrate of an increase in TSPO-ligand binding might be diverse including microglia activation, peripheral monocyte recruitment, or astrocytosis, but not axonal injury.


Subject(s)
Carbazoles/metabolism , Multiple Sclerosis/diagnostic imaging , Receptors, GABA/metabolism , Animals , Astrocytes/pathology , Astrocytes/ultrastructure , Axons/metabolism , Axons/ultrastructure , Biomarkers/metabolism , Cuprizone , Demyelinating Diseases/diagnostic imaging , Demyelinating Diseases/pathology , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/diagnostic imaging , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Inflammation/pathology , Ligands , Mice, Inbred C57BL , Mitochondria/metabolism , Mitochondria/ultrastructure , Monocytes/metabolism , Neuroglia/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, GABA/genetics
5.
Nat Neurosci ; 22(2): 191-204, 2019 02.
Article in English | MEDLINE | ID: mdl-30617257

ABSTRACT

Coding variants in the triggering receptor expressed on myeloid cells 2 (TREM2) are associated with late-onset Alzheimer's disease (AD). We demonstrate that amyloid plaque seeding is increased in the absence of functional Trem2. Increased seeding is accompanied by decreased microglial clustering around newly seeded plaques and reduced plaque-associated apolipoprotein E (ApoE). Reduced ApoE deposition in plaques is also observed in brains of AD patients carrying TREM2 coding variants. Proteomic analyses and microglia depletion experiments revealed microglia as one origin of plaque-associated ApoE. Longitudinal amyloid small animal positron emission tomography demonstrates accelerated amyloidogenesis in Trem2 loss-of-function mutants at early stages, which progressed at a lower rate with aging. These findings suggest that in the absence of functional Trem2, early amyloidogenesis is accelerated due to reduced phagocytic clearance of amyloid seeds despite reduced plaque-associated ApoE.


Subject(s)
Alzheimer Disease/genetics , Amyloid/metabolism , Apolipoproteins E/metabolism , Brain/pathology , Membrane Glycoproteins/genetics , Plaque, Amyloid/genetics , Receptors, Immunologic/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Brain/metabolism , Disease Models, Animal , Genotype , Humans , Membrane Glycoproteins/metabolism , Mice , Mice, Transgenic , Microglia/metabolism , Microglia/pathology , Phagocytosis/physiology , Plaque, Amyloid/metabolism , Plaque, Amyloid/pathology , Receptors, Immunologic/metabolism
6.
J Nucl Med ; 60(4): 548-554, 2019 04.
Article in English | MEDLINE | ID: mdl-30262517

ABSTRACT

Neuroinflammation may have beneficial or detrimental net effects on the cognitive outcome of Alzheimer disease (AD) patients. PET imaging with 18-kDa translocator protein (TSPO) enables longitudinal monitoring of microglial activation in vivo. Methods: We compiled serial PET measures of TSPO and amyloid with terminal cognitive assessment (water maze) in an AD transgenic mouse model (PS2APP) from 8 to 13 mo of age, followed by immunohistochemical analyses of microglia, amyloid, and synaptic density. Results: Better cognitive outcome and higher synaptic density in PS2APP mice was predicted by higher TSPO expression at 8 mo. The progression of TSPO activation to 13 mo also showed a moderate association with spared cognition, but amyloidosis did not correlate with the cognitive outcome, regardless of the time point. Conclusion: This first PET investigation with longitudinal TSPO and amyloid PET together with terminal cognitive testing in an AD mouse model indicates that continuing microglial response seems to impart preserved cognitive performance.


Subject(s)
Alzheimer Disease/diagnosis , Alzheimer Disease/pathology , Cognition , Microglia/pathology , Alzheimer Disease/metabolism , Alzheimer Disease/physiopathology , Amyloidogenic Proteins/metabolism , Animals , Female , Longitudinal Studies , Maze Learning , Mice , Mice, Inbred C57BL , Mice, Transgenic , Positron-Emission Tomography , Prognosis , Receptors, GABA/metabolism
7.
J Neuroinflammation ; 15(1): 307, 2018 Nov 06.
Article in English | MEDLINE | ID: mdl-30400912

ABSTRACT

BACKGROUND: Causal associations between microglia activation and ß-amyloid (Aß) accumulation during the progression of Alzheimer's disease (AD) remain a matter of controversy. Therefore, we used longitudinal dual tracer in vivo small animal positron emission tomography (µPET) imaging to resolve the progression of the association between Aß deposition and microglial responses during aging of an Aß mouse model. METHODS: APP-SL70 mice (N = 17; baseline age 3.2-8.5 months) and age-matched C57Bl/6 controls (wildtype (wt)) were investigated longitudinally for 6 months using Aß (18F-florbetaben) and 18 kDa translocator protein (TSPO) µPET (18F-GE180). Changes in cortical binding were transformed to Z-scores relative to wt mice, and microglial activation relative to amyloidosis was defined as the Z-score difference (TSPO-Aß). Using 3D immunohistochemistry for activated microglia (Iba-1) and histology for fibrillary Aß (methoxy-X04), we measure microglial brain fraction relative to plaque size and the distance from plaque margins. RESULTS: Aß-PET binding increased exponentially as a function of age in APP-SL70 mice, whereas TSPO binding had an inverse U-shape growth function. Longitudinal Z-score differences declined with aging, suggesting that microglial response declined relative to increasing amyloidosis in aging APP-SL70 mice. Microglial brain volume fraction was inversely related to adjacent plaque size, while the proximity to Aß plaques increased with age. CONCLUSIONS: Microglial activity decreases relative to ongoing amyloidosis with aging in APP-SL70 mice. The plaque-associated microglial brain fraction saturated and correlated negatively with increasing plaque size with aging.


Subject(s)
Aging , Alzheimer Disease/diagnostic imaging , Amyloid beta-Peptides/metabolism , Microglia/metabolism , Positron-Emission Tomography , Alzheimer Disease/genetics , Amyloid beta-Protein Precursor/genetics , Amyloidosis/diagnostic imaging , Animals , Calcium-Binding Proteins/metabolism , Carbazoles/pharmacokinetics , Disease Models, Animal , Fluorodeoxyglucose F18/pharmacokinetics , Longitudinal Studies , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microfilament Proteins/metabolism , Microglia/drug effects , Radiochemistry , Receptors, GABA/metabolism
8.
Front Aging Neurosci ; 10: 174, 2018.
Article in English | MEDLINE | ID: mdl-29930508

ABSTRACT

Positron-emission-tomography (PET) imaging of tau pathology has facilitated development of anti-tau therapies. While members of the arylquinoline and pyridoindole families have been the most frequently used tau radioligands so far, analyses of their comparative performance in vivo are scantly documented. Here, we conducted a head-to-head PET comparison of the arylquinoline 18FT807 and the pyridoindole 18FTHK5117 PET in a mouse model of tau pathology. PET recordings were obtained in groups of (N = 5-7) P301S and wild-type (WT) mice at 6 and 9 months of age. Volume-of-interest based analysis (standard-uptake-value ratio, SUVR) was used to calculate effect sizes (Cohen's d) for each tracer and age. Statistical parametric mapping (SPM) was used to assess regional similarity (dice coefficient) of tracer binding alterations for the two tracers. Immunohistochemistry staining of neurofibrillary tangles was performed for validation ex vivo. Significantly elevated 18F-T807 binding in the brainstem of P301S mice was already evident at 6 months (+14%, p < 0.01, d = 1.64), and increased further at 9 months (+23%, p < 0.001, d = 2.70). 18F-THK5117 indicated weaker increases and effect sizes at 6 months (+5%, p < 0.05, d = 1.07) and 9 months (+10%, p < 0.001, d = 1.49). Regional similarity of binding of the two tracers was high (71%) at 9 months. 18F-T807 was more sensitive than 18F-THK5117 to tau pathology in this model, although both tracers present certain obstacles, which need to be considered in the design of longitudinal preclinical tau imaging studies.

9.
Data Brief ; 19: 331-336, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29892655

ABSTRACT

Data in this article show radioligand uptake (to gamma counter and positron-emission-tomography) as well as polymerase chain reaction analyses of 18 kDa translocator protein (TSPO) quantification. We confirmed specificity of [18F]GE180 binding of rodent brain and myocardium by blocking experiments with prior application of non-radioactive GE180, using dynamic in vivo positron-emission-tomography and ex vivo gamma counter measurements. Expression of TSPO was compared between rodent brain and myocardium by quantitative polymerase chain reaction.

10.
Neuroimage ; 165: 83-91, 2018 01 15.
Article in English | MEDLINE | ID: mdl-28988133

ABSTRACT

OBJECTIVES: PET imaging of the 18 kDa translocator protein (TSPO), a biomarker of microglial activity, receives growing interest in clinical and preclinical applications of neuroinflammatory and neurodegenerative brain diseases. In globally affected brains, intra-cerebral pseudo reference regions are not feasible. Consequently, many brain-independent approaches have been attempted, including SUV analysis and normalization to muscle- or heart uptake, aiming to stabilize quantitative analysis. In this study, we systematically compared different image normalization methods for static late phase TSPO-PET imaging of rodent brain. METHODS: We first obtained gamma counter measurements for gold standard quantitation of [18F]GE180 uptake in brain of C57Bl/6 mice (N = 10) after PET, aiming to identify factors contributing significantly to the quantitative results. Subsequently, data from a large cohort of C57Bl/6 mice (N = 79) were compiled to precisely determine the weighted influence and variance attributable these factors by regression analysis. Scan-rescan variability and agreement with histology were used to validate the tested normalization methods in an Alzheimer's disease (AD) mouse model with pathologically increased TSPO expression (PS2APP; N = 24). Longitudinal data from AD model mice (N = 10) scanned at four different ages were used to challenge and validate the different normalization methods in a practical application. RESULTS: Gamma counter results revealed that injected dose, body weight and PET-measured radioactivity concentration in the ventral myocardium all significantly accounted for [18F]GE180 activity in the brain. Skeletal muscle activity had high test-retest variance in this PET only application and was therefore pursued no further. Regression analysis of the large scale evaluation showed that scaling to injected dose or SUV analysis accounted for little variance in brain activity (R2 < 0.5), but inclusion of myocardial activity together with injected dose and body weight in the regression model accounted for most of the variance in brain uptake (R2 = 0.94). Scan-rescan stability, correlation with histology and applicability for longitudinal examination in the disease model were also significantly improved by inclusion of myocadial uptake in the quantitative model. CONCLUSION: Cerebral and myocardial TSPO expression are highly coupled under physiological conditions. Myocardial uptake has great potential for stabilization of static late phase [18F]GE180 quantification in brain in the absence of a valid intra-cerebral pseudo-reference region.


Subject(s)
Brain/diagnostic imaging , Image Processing, Computer-Assisted/methods , Molecular Imaging/methods , Positron-Emission Tomography/methods , Receptors, GABA/analysis , Alzheimer Disease/diagnostic imaging , Animals , Female , Fluorine Radioisotopes , Heart/diagnostic imaging , Mice , Mice, Inbred C57BL , Myocardium , Neuroimaging/methods , Radionuclide Imaging/methods , Radiopharmaceuticals
11.
J Nucl Med ; 58(12): 1984-1990, 2017 12.
Article in English | MEDLINE | ID: mdl-28705919

ABSTRACT

Contrary to findings in the human brain, 18F-FDG PET shows cerebral hypermetabolism of aged wild-type (WT) mice relative to younger animals, supposedly due to microglial activation. Therefore, we used dual-tracer small-animal PET to examine directly the link between neuroinflammation and hypermetabolism in aged mice. Methods: WT mice (5-20 mo) were investigated in a cross-sectional design using 18F-FDG (n = 43) and translocator protein (TSPO) (18F-GE180; n = 58) small-animal PET, with volume-of-interest and voxelwise analyses. Biochemical analysis of plasma cytokine levels and immunohistochemical confirmation of microglial activity were also performed. Results: Age-dependent cortical hypermetabolism in WT mice relative to young animals aged 5 mo peaked at 14.5 mo (+16%, P < 0.001) and declined to baseline at 20 mo. Similarly, cortical TSPO binding increased to a maximum at 14.5 mo (+15%, P < 0.001) and remained high to 20 mo, resulting in an overall correlation between 18F-FDG uptake and TSPO binding (R = 0.69, P < 0.005). Biochemical and immunohistochemical analyses confirmed the TSPO small-animal PET findings. Conclusion: Age-dependent neuroinflammation is associated with the controversial observation of cerebral hypermetabolism in aging WT mice.


Subject(s)
Cerebral Cortex/diagnostic imaging , Cerebral Cortex/metabolism , Glucose/metabolism , Microglia/physiology , Aging/metabolism , Animals , Brain Mapping , Cross-Sectional Studies , Cytokines/metabolism , Female , Fluorodeoxyglucose F18 , Imaging, Three-Dimensional , Inflammation/diagnostic imaging , Inflammation/metabolism , Mice , Mice, Inbred C57BL , Positron-Emission Tomography , Radiopharmaceuticals , Receptors, GABA/metabolism
12.
EMBO J ; 36(13): 1837-1853, 2017 07 03.
Article in English | MEDLINE | ID: mdl-28559417

ABSTRACT

Genetic variants in the triggering receptor expressed on myeloid cells 2 (TREM2) increase the risk for several neurodegenerative diseases including Alzheimer's disease and frontotemporal dementia (FTD). Homozygous TREM2 missense mutations, such as p.T66M, lead to the FTD-like syndrome, but how they cause pathology is unknown. Using CRISPR/Cas9 genome editing, we generated a knock-in mouse model for the disease-associated Trem2 p.T66M mutation. Consistent with a loss-of-function mutation, we observe an intracellular accumulation of immature mutant Trem2 and reduced generation of soluble Trem2 similar to patients with the homozygous p.T66M mutation. Trem2 p.T66M knock-in mice show delayed resolution of inflammation upon in vivo lipopolysaccharide stimulation and cultured macrophages display significantly reduced phagocytic activity. Immunohistochemistry together with in vivo TSPO small animal positron emission tomography (µPET) demonstrates an age-dependent reduction in microglial activity. Surprisingly, perfusion magnetic resonance imaging and FDG-µPET imaging reveal a significant reduction in cerebral blood flow and brain glucose metabolism. Thus, we demonstrate that a TREM2 loss-of-function mutation causes brain-wide metabolic alterations pointing toward a possible function of microglia in regulating brain glucose metabolism.


Subject(s)
Brain/pathology , Frontotemporal Dementia/pathology , Glucose/metabolism , Membrane Glycoproteins/genetics , Microglia/physiology , Mutation, Missense , Perfusion , Receptors, Immunologic/genetics , Animals , Disease Models, Animal , Gene Knock-In Techniques , Humans , Immunohistochemistry , Magnetic Resonance Imaging , Mice , Mutant Proteins/genetics , Positron-Emission Tomography
13.
Front Neurosci ; 10: 45, 2016.
Article in English | MEDLINE | ID: mdl-26973442

ABSTRACT

Preclinical PET studies of ß-amyloid (Aß) accumulation are of growing importance, but comparisons between research sites require standardized and optimized methods for quantitation. Therefore, we aimed to evaluate systematically the (1) impact of an automated algorithm for spatial brain normalization, and (2) intensity scaling methods of different reference regions for Aß-PET in a large dataset of transgenic mice. PS2APP mice in a 6 week longitudinal setting (N = 37) and another set of PS2APP mice at a histologically assessed narrow range of Aß burden (N = 40) were investigated by [(18)F]-florbetaben PET. Manual spatial normalization by three readers at different training levels was performed prior to application of an automated brain spatial normalization and inter-reader agreement was assessed by Fleiss Kappa (κ). For this method the impact of templates at different pathology stages was investigated. Four different reference regions on brain uptake normalization were used to calculate frontal cortical standardized uptake value ratios (SUVRCTX∕REF), relative to raw SUVCTX. Results were compared on the basis of longitudinal stability (Cohen's d), and in reference to gold standard histopathological quantitation (Pearson's R). Application of an automated brain spatial normalization resulted in nearly perfect agreement (all κ≥0.99) between different readers, with constant or improved correlation with histology. Templates based on inappropriate pathology stage resulted in up to 2.9% systematic bias for SUVRCTX∕REF. All SUVRCTX∕REF methods performed better than SUVCTX both with regard to longitudinal stability (d≥1.21 vs. d = 0.23) and histological gold standard agreement (R≥0.66 vs. R≥0.31). Voxel-wise analysis suggested a physiologically implausible longitudinal decrease by global mean scaling. The hindbrain white matter reference (R mean = 0.75) was slightly superior to the brainstem (R mean = 0.74) and the cerebellum (R mean = 0.73). Automated brain normalization with reference region templates presents an excellent method to avoid the inter-reader variability in preclinical Aß-PET scans. Intracerebral reference regions lacking Aß pathology serve for precise longitudinal in vivo quantification of [(18)F]-florbetaben PET. Hindbrain white matter reference performed best when considering the composite of quality criteria.

SELECTION OF CITATIONS
SEARCH DETAIL
...