Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 12: 709857, 2021.
Article in English | MEDLINE | ID: mdl-34966395

ABSTRACT

Legumes establish an endosymbiotic association with nitrogen-fixing soil bacteria. Following the mutual recognition of the symbiotic partner, the infection process is controlled by the induction of the signaling pathway and subsequent activation of symbiosis-related host genes. One of the protein complexes regulating nitrogen-fixing root nodule symbiosis is formed by GRAS domain regulatory proteins Nodulation Signaling Pathways 1 and 2 (NSP1 and NSP2) that control the expression of several early nodulation genes. Here, we report on a novel point mutant allele (nsp2-6) affecting the function of the NSP2 gene and compared the mutant with the formerly identified nsp2-3 mutant. Both mutants carry a single amino acid substitution in the VHIID motif of the NSP2 protein. We found that the two mutant alleles show dissimilar root hair response to bacterial infection. Although the nsp2-3 mutant developed aberrant infection threads, rhizobia were able to colonize nodule cells in this mutant. The encoded NSP2 proteins of the nsp2-3 and the novel nsp2 mutants interact with NSP1 diversely and, as a consequence, the activation of early nodulin genes and nodule organogenesis are arrested in the new nsp2 allele. The novel mutant with amino acid substitution D244H in NSP2 shows similar defects in symbiotic responses as a formerly identified nsp2-2 mutant carrying a deletion in the NSP2 gene. Additionally, we found that rhizobial strains induce delayed nodule formation on the roots of the ns2-3 weak allele. Our study highlights the importance of a conserved Asp residue in the VHIID motif of NSP2 that is required for the formation of a functional NSP1-NSP2 signaling module. Furthermore, our results imply the involvement of NSP2 during differentiation of symbiotic nodule cells.

2.
BMC Cancer ; 18(1): 704, 2018 Jul 03.
Article in English | MEDLINE | ID: mdl-29970035

ABSTRACT

BACKGROUND: The treatment of acute lymphoblastic leukemia (ALL) and osteosarcoma (OSC) is very effective: the vast majority of patients recover and survive for decades. However, they still need to face serious adverse effects of chemotherapy. One of these is cardiotoxicity which may lead to progressive heart failure in the long term. Cardiotoxicity is contributed mainly to the use of anthracyclines and might have genetic risk factors. Our goal was to test the association between left ventricular function and genetic variations of candidate genes. METHODS: Echocardiography data from medical records of 622 pediatric ALL and 39 OSC patients were collected from the period 1989-2015. Fractional shortening (FS) and ejection fraction (EF) were determined, 70 single nucleotide polymorphisms (SNPs) in 26 genes were genotyped. Multivariate logistic regression and multi-adjusted general linear model were performed to investigate the influence of genetic polymorphisms on the left ventricular parameters. Bayesian network based Bayesian multilevel analysis of relevance (BN-BMLA) method was applied to test for the potential interaction of the studied cofactors and SNPs. RESULTS: Our results indicate that variations in ABCC2, CYP3A5, NQO1, SLC22A6 and SLC28A3 genes might influence the left ventricular parameters. CYP3A5 rs4646450 TT was 17% among ALL cases with FS lower than 28, and 3% in ALL patients without pathological FS (p = 5.60E-03; OR = 6.94 (1.76-27.39)). SLC28A3 rs7853758 AA was 12% in ALL cases population, while only 1% among controls (p = 6.50E-03; OR = 11.56 (1.98-67.45)). Patients with ABCC2 rs3740066 GG genotype had lower FS during the acute phase of therapy and 5-10 years after treatment (p = 7.38E-03, p = 7.11E-04, respectively). NQO1 rs1043470 rare T allele was associated with lower left ventricular function in the acute phase and 5-10 years after the diagnosis (p = 4.28E-03 and 5.82E-03, respectively), and SLC22A6 gene rs6591722 AA genotype was associated with lower mean FS (p = 1.71E-03), 5-10 years after the diagnosis. CONCLUSIONS: Genetic variants in transporters and metabolic enzymes might modulate the individual risk to cardiac toxicity after chemotherapy.


Subject(s)
Anthracyclines/adverse effects , Antibiotics, Antineoplastic/adverse effects , Bone Neoplasms/drug therapy , Osteosarcoma/drug therapy , Polymorphism, Single Nucleotide , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Adolescent , Bayes Theorem , Bone Neoplasms/genetics , Cardiotoxicity , Child , Child, Preschool , Cytochrome P-450 CYP3A/genetics , Female , Genotype , Humans , Infant , Infant, Newborn , Logistic Models , Male , Multidrug Resistance-Associated Protein 2 , Multidrug Resistance-Associated Proteins/genetics , Osteosarcoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
3.
Genes (Basel) ; 8(12)2017 Dec 14.
Article in English | MEDLINE | ID: mdl-29240711

ABSTRACT

Legumes form endosymbiotic interaction with host compatible rhizobia, resulting in the development of nitrogen-fixing root nodules. Within symbiotic nodules, rhizobia are intracellularly accommodated in plant-derived membrane compartments, termed symbiosomes. In mature nodule, the massively colonized cells tolerate the existence of rhizobia without manifestation of visible defense responses, indicating the suppression of plant immunity in the nodule in the favur of the symbiotic partner. Medicago truncatulaDNF2 (defective in nitrogen fixation 2) and NAD1 (nodules with activated defense 1) genes are essential for the control of plant defense during the colonization of the nitrogen-fixing nodule and are required for bacteroid persistence. The previously identified nodule-specific NAD1 gene encodes a protein of unknown function. Herein, we present the analysis of novel NAD1 mutant alleles to better understand the function of NAD1 in the repression of immune responses in symbiotic nodules. By exploiting the advantage of plant double and rhizobial mutants defective in establishing nitrogen-fixing symbiotic interaction, we show that NAD1 functions following the release of rhizobia from the infection threads and colonization of nodule cells. The suppression of plant defense is self-dependent of the differentiation status of the rhizobia. The corresponding phenotype of nad1 and dnf2 mutants and the similarity in the induction of defense-associated genes in both mutants suggest that NAD1 and DNF2 operate close together in the same pathway controlling defense responses in symbiotic nodules.

4.
Proc Natl Acad Sci U S A ; 114(26): 6854-6859, 2017 06 27.
Article in English | MEDLINE | ID: mdl-28607058

ABSTRACT

Legumes engage in root nodule symbioses with nitrogen-fixing soil bacteria known as rhizobia. In nodule cells, bacteria are enclosed in membrane-bound vesicles called symbiosomes and differentiate into bacteroids that are capable of converting atmospheric nitrogen into ammonia. Bacteroid differentiation and prolonged intracellular survival are essential for development of functional nodules. However, in the Medicago truncatula-Sinorhizobium meliloti symbiosis, incompatibility between symbiotic partners frequently occurs, leading to the formation of infected nodules defective in nitrogen fixation (Fix-). Here, we report the identification and cloning of the M. truncatula NFS2 gene that regulates this type of specificity pertaining to S. meliloti strain Rm41. We demonstrate that NFS2 encodes a nodule-specific cysteine-rich (NCR) peptide that acts to promote bacterial lysis after differentiation. The negative role of NFS2 in symbiosis is contingent on host genetic background and can be counteracted by other genes encoded by the host. This work extends the paradigm of NCR function to include the negative regulation of symbiotic persistence in host-strain interactions. Our data suggest that NCR peptides are host determinants of symbiotic specificity in M. truncatula and possibly in closely related legumes that form indeterminate nodules in which bacterial symbionts undergo terminal differentiation.


Subject(s)
Antimicrobial Cationic Peptides/metabolism , Bacteria/metabolism , Medicago truncatula , Nitrogen Fixation/physiology , Plant Proteins/metabolism , Soil Microbiology , Symbiosis/physiology , Medicago truncatula/metabolism , Medicago truncatula/microbiology
5.
Allergy Asthma Immunol Res ; 9(3): 247-256, 2017 May.
Article in English | MEDLINE | ID: mdl-28293931

ABSTRACT

PURPOSE: Several lines of evidence indicate that the Hippo/Yes-associated protein 1 (YAP1) pathways might play a role in the pathogenesis of asthma. To investigate the possible role of the Hippo/YAP1 pathway in the pathogenesis of asthma or its phenotypes. METHODS: The levels of gene expressions of the members of the Hippo/YAP1 were compared. The presence of the proteins of the YAP1 and FRMD6 were analyzed with Western blot in induced sputum of 18 asthmatic subjects and 10 control subjects. Fourteen single nucleotide polymorphisms (SNPs) in the YAP1 gene were genotyped in 522 asthmatic subjects and 711 healthy controls. The results were evaluated with traditional frequentist methods and with Bayesian network-based Bayesian multilevel analysis of relevance (BN-BMLA). RESULTS: The mRNA of all the members of the Hippo/YAP1 pathway could be detected in the induced sputum of both controls and cases. A correlation was found between YAP1 mRNA levels and sputum bronchial epithelial cells (r=0.575, P=0.003). The signal for the FRMD6 protein could be detected in all sputum samples while the YAP1 protein could not be detected in the sputum samples, of the healthy controls and severe asthmatics, but it was detectable in mild asthmatics. The rs2846836 SNP of the YAP1 gene was significantly associated with exercise-induced asthma (odds ratio [OR]=2.1 [1.3-3.4]; P=0.004). The distribution of genotypes of rs11225138 and certain haplotypes of the YAP1 gene showed significant differences between different asthma severity statuses. With BN-BMLA, 2 SNPs, genetic variations in the FRMD6 gene proved to be the most relevant to exercise-induced asthma and allergic rhinitis. These 2 SNPs through allergic rhinitis and exercise-induced asthma were in epistatic interaction with each other. CONCLUSIONS: Our results provided additional evidence that the FRMD6/Hippo/YAP1 pathway plays a role in the pathogenesis of asthma. If additional studies can confirm these findings, this pathway can be a potential novel therapeutic target in asthma and other inflammatory airway diseases.

6.
Pharmacogenomics ; 17(9): 1075-87, 2016 06.
Article in English | MEDLINE | ID: mdl-27266419

ABSTRACT

Anthracyclines constitute a fundamental part of the chemotherapy regimens utilized to treat a number of different malignancies both in pediatric and adult patients. These drugs are one of the most efficacious anticancer agents ever invented. On the other hand, anthracyclines are cardiotoxic. Childhood cancer survivors treated with anthracyclines often undergo cardiac complications which are influenced by genetic variations of the patients. The scientific literature comprises numerous investigations in the subject of the pharmacogenetics of anthracyclines. In this review, we provide a comprehensive overview of this research topic. Genetic variants are proposed targets in the personalized treatment in order to individualize dosing and therefore reduce side effects.


Subject(s)
Anthracyclines/therapeutic use , Antibiotics, Antineoplastic/therapeutic use , Neoplasms/drug therapy , Neoplasms/genetics , Pharmacogenetics , Animals , Anthracyclines/pharmacokinetics , Antibiotics, Antineoplastic/pharmacokinetics , Humans
7.
Int J Mol Sci ; 16(10): 25450-65, 2015 Oct 23.
Article in English | MEDLINE | ID: mdl-26512655

ABSTRACT

Tumor protein 53-induced nuclear protein-1 (TP53inp1) is expressed by activation via p53 and p73. The purpose of our study was to investigate the role of TP53inp1 in response of fibroblasts to ionizing radiation. γ-Ray radiation dose-dependently induces the expression of TP53inp1 in human immortalized fibroblast (F11hT) cells. Stable silencing of TP53inp1 was done via lentiviral transfection of shRNA in F11hT cells. After irradiation the clonogenic survival of TP53inp1 knockdown (F11hT-shTP) cells was compared to cells transfected with non-targeting (NT) shRNA. Radiation-induced senescence was measured by SA-ß-Gal staining and autophagy was detected by Acridine Orange dye and microtubule-associated protein-1 light chain 3 (LC3B) immunostaining. The expression of TP53inp1, GDF-15, and CDKN1A and alterations in radiation induced mitochondrial DNA deletions were evaluated by qPCR. TP53inp1 was required for radiation (IR) induced maximal elevation of CDKN1A and GDF-15 expressions. Mitochondrial DNA deletions were increased and autophagy was deregulated following irradiation in the absence of TP53inp1. Finally, we showed that silencing of TP53inp1 enhances the radiation sensitivity of fibroblast cells. These data suggest functional roles for TP53inp1 in radiation-induced autophagy and survival. Taken together, we suppose that silencing of TP53inp1 leads radiation induced autophagy impairment and induces accumulation of damaged mitochondria in primary human fibroblasts.


Subject(s)
Carrier Proteins/metabolism , Fibroblasts/radiation effects , Heat-Shock Proteins/metabolism , Autophagy , Carrier Proteins/genetics , Cell Line , Cellular Senescence , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , DNA, Mitochondrial/genetics , Fibroblasts/metabolism , Growth Differentiation Factor 15/genetics , Growth Differentiation Factor 15/metabolism , Heat-Shock Proteins/genetics , Humans
8.
Allergy Asthma Immunol Res ; 6(6): 496-503, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25374748

ABSTRACT

PURPOSE: Based on a previous gene expression study in a mouse model of asthma, we selected 60 candidate genes and investigated their possible roles in human asthma. METHODS: In these candidate genes, 90 SNPs were genotyped using MassARRAY technology from 311 asthmatic children and 360 healthy controls of the Hungarian (Caucasian) population. Moreover, gene expression levels were measured by RT PCR in the induced sputum of 13 asthmatics and 10 control individuals. t-tests, chi-square tests, and logistic regression were carried out in order to assess associations of SNP frequency and expression level with asthma. Permutation tests were performed to account for multiple hypothesis testing. RESULTS: The frequency of 4 SNPs in 2 genes differed significantly between asthmatic and control subjects: SNPs rs2240572, rs2240571, rs3735222 in gene SCIN, and rs32588 in gene PPARGC1B. Carriers of the minor alleles had reduced risk of asthma with an odds ratio of 0.64 (0.51-0.80; P=7×10(-5)) in SCIN and 0.56 (0.42-0.76; P=1.2×10(-4)) in PPARGC1B. The expression levels of SCIN, PPARGC1B and ITLN1 genes were significantly lower in the sputum of asthmatics. CONCLUSIONS: Three potentially novel asthma-associated genes were identified based on mouse experiments and human studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...