Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
3.
Sci Adv ; 8(46): eabn7450, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36383665

ABSTRACT

Rodents perceive pheromones via vomeronasal receptors encoded by highly evolutionarily dynamic Vr and Fpr gene superfamilies. We report here that high numbers of V1r pseudogenes are scattered in mammalian genomes, contrasting with the clustered organization of functional V1r and Fpr genes. We also found that V1r pseudogenes are more likely to be expressed when located in a functional V1r gene cluster than when isolated. To explore the potential regulatory role played by the association of functional vomeronasal receptor genes with their clusters, we dissociated the mouse Fpr-rs3 from its native cluster via transgenesis. Singular and specific transgenic Fpr-rs3 transcription was observed in young vomeronasal neurons but was only transient. Our study of natural and artificial dispersed gene duplications uncovers the existence of transcription-stabilizing elements not coupled to vomeronasal gene units but rather associated with vomeronasal gene clusters and thus explains the evolutionary conserved clustered organization of functional vomeronasal genes.

4.
Nat Commun ; 13(1): 2929, 2022 05 25.
Article in English | MEDLINE | ID: mdl-35614043

ABSTRACT

In mammals, chemoperception relies on a diverse set of neuronal sensors able to detect chemicals present in the environment, and to adapt to various levels of stimulation. The contribution of endogenous and external factors to these neuronal identities remains to be determined. Taking advantage of the parallel coding lines present in the olfactory system, we explored the potential variations of neuronal identities before and after olfactory experience. We found that at rest, the transcriptomic profiles of mouse olfactory sensory neuron populations are already divergent, specific to the olfactory receptor they express, and are associated with the sequence of these latter. These divergent profiles further evolve in response to the environment, as odorant exposure leads to reprogramming via the modulation of transcription. These findings highlight a broad range of sensory neuron identities that are present at rest and that adapt to the experience of the individual, thus adding to the complexity and flexibility of sensory coding.


Subject(s)
Olfactory Receptor Neurons , Receptors, Odorant , Animals , Mammals , Mice , Odorants , Olfactory Receptor Neurons/physiology , Receptors, Odorant/genetics , Sensory Receptor Cells , Smell
5.
Nat Commun ; 13(1): 2020, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35440614

ABSTRACT

Generation of surrogate cells with stable functional identities is crucial for developing cell-based therapies. Efforts to produce insulin-secreting replacement cells to treat diabetes require reliable tools to assess islet cellular identity. Here, we conduct a thorough single-cell transcriptomics meta-analysis to identify robustly expressed markers used to build genesets describing the identity of human α-, ß-, γ- and δ-cells. These genesets define islet cellular identities better than previously published genesets. We show their efficacy to outline cell identity changes and unravel some of their underlying genetic mechanisms, whether during embryonic pancreas development or in experimental setups aiming at developing glucose-responsive insulin-secreting cells, such as pluripotent stem-cell differentiation or in adult islet cell reprogramming protocols. These islet cell type-specific genesets represent valuable tools that accurately benchmark gain and loss in islet cell identity traits.


Subject(s)
Insulin-Secreting Cells , Islets of Langerhans , Pluripotent Stem Cells , Cell Differentiation/genetics , Humans , Insulin/genetics
6.
iScience ; 23(12): 101839, 2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33251489

ABSTRACT

Reports indicate an association between COVID-19 and anosmia, as well as the presence of SARS-CoV-2 virions in the olfactory bulb. To test whether the olfactory neuroepithelium may represent a target of the virus, we generated RNA-seq libraries from human olfactory neuroepithelia, in which we found substantial expression of the genes coding for the virus receptor angiotensin-converting enzyme-2 (ACE2) and for the virus internalization enhancer TMPRSS2. We analyzed a human olfactory single-cell RNA-seq dataset and determined that sustentacular cells, which maintain the integrity of olfactory sensory neurons, express ACE2 and TMPRSS2. ACE2 protein was highly expressed in a subset of sustentacular cells in human and mouse olfactory tissues. Finally, we found ACE2 transcripts in specific brain cell types, both in mice and humans. Sustentacular cells thus represent a potential entry door for SARS-CoV-2 in a neuronal sensory system that is in direct connection with the brain.

7.
Nat Commun ; 11(1): 3245, 2020 06 26.
Article in English | MEDLINE | ID: mdl-32591523

ABSTRACT

Neurons in primary sensory cortex encode a variety of stimulus features upon perceptual learning. However, it is unclear whether the acquired stimulus selectivity remains stable when the same input is perceived in a different context. Here, we monitor the activity of individual neurons in the mouse primary somatosensory cortex during reward-based texture discrimination. We track their stimulus selectivity before and after changing reward contingencies, which allows us to identify various classes of neurons. We find neurons that stably represented a texture or the upcoming behavioral choice, but the majority is dynamic. Among those, a subpopulation of neurons regains texture selectivity contingent on the associated reward value. These value-sensitive neurons forecast the onset of learning by displaying a distinct and transient increase in activity, depending on past behavioral experience. Thus, stimulus selectivity of excitatory neurons during perceptual learning is dynamic and largely relies on behavioral contingencies, even in primary sensory cortex.


Subject(s)
Perception/physiology , Reversal Learning/physiology , Somatosensory Cortex/physiology , Animals , Behavior, Animal , Calcium Signaling , Choice Behavior , Discrimination, Psychological , Male , Mice, Inbred C57BL , Neurons/physiology , Reward , Sensation , Time Factors
8.
Neurosci Biobehav Rev ; 57: 284-96, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26321590

ABSTRACT

Neural models of anatomical and functional alterations have been proposed for bipolar disorders (BD). However, studies in affected patients do not allow disentangling alterations linked to the liability to BD from those associated with the evolution, medication and comorbidities of BD. Explorations in high risk subjects allow the study of these risk markers. We reported and summarized all functional magnetic resonance imaging (fMRI) studies focusing on first-degree relatives of BD patients. We found 29 studies reporting neural correlates of working memory (WM), emotional processing, executive functions and resting state in relatives of BD patients, compared to healthy subjects. Overall, the same regions that have been involved in patients, such as the inferior frontal gyrus and limbic areas, seem to be functionally altered in high-risk subjects. We conclude that the same brain regions already implicated in the pathophysiology of the disease such as the amygdala are also associated with the risk of BD. However longitudinal studies are required to understand their implication in the transition to BD.


Subject(s)
Bipolar Disorder/physiopathology , Brain/physiopathology , Family , Functional Neuroimaging , Magnetic Resonance Imaging , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...