Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Proc Biol Sci ; 284(1854)2017 May 17.
Article in English | MEDLINE | ID: mdl-28469022

ABSTRACT

The indirect flight muscles (IFMs) of Drosophila and other insects with asynchronous flight muscles are characterized by a crystalline myofilament lattice structure. The high-order lattice regularity is considered an adaptation for enhanced power output, but supporting evidence for this claim is lacking. We show that IFMs from transgenic flies expressing flightin with a deletion of its poorly conserved N-terminal domain (flnΔN62 ) have reduced inter-thick filament spacing and a less regular lattice. This resulted in a decrease in flight ability by 33% and in skinned fibre oscillatory power output by 57%, but had no effect on wingbeat frequency or frequency of maximum power output, suggesting that the underlying actomyosin kinetics is not affected and that the flight impairment arises from deficits in force transmission. Moreover, we show that flnΔN62 males produced an abnormal courtship song characterized by a higher sine song frequency and a pulse song with longer pulses and longer inter-pulse intervals (IPIs), the latter implicated in male reproductive success. When presented with a choice, wild-type females chose control males over mutant males in 92% of the competition events. These results demonstrate that flightin N-terminal domain is required for optimal myofilament lattice regularity and IFM activity, enabling powered flight and courtship song production. As the courtship song is subject to female choice, we propose that the low amino acid sequence conservation of the N-terminal domain reflects its role in fine-tuning species-specific courtship songs.


Subject(s)
Courtship , Drosophila Proteins/physiology , Drosophila melanogaster/physiology , Filamins/physiology , Flight, Animal , Muscle Proteins/physiology , Myofibrils/physiology , Animals , Female , Male
2.
PLoS One ; 9(2): e90077, 2014.
Article in English | MEDLINE | ID: mdl-24587213

ABSTRACT

The Drosophila indirect flight muscles (IFM) rely on an enhanced stretch-activation response to generate high power output for flight. The IFM is neurally activated during the male courtship song, but its role, if any, in generating the small amplitude wing vibrations that produce the song is not known. Here, we examined the courtship song properties and mating behavior of three mutant strains of the myosin regulatory light chain (DMLC2) that are known to affect IFM contractile properties and impair flight: (i) Dmlc2(Δ2-46) (Ext), an N-terminal extension truncation; (ii) Dmlc2(S66A,S67A) (Phos), a disruption of two MLC kinase phosphorylation sites; and (iii) Dmlc2(Δ2-46;S66A,S67A) (Dual), expressing both mutations. Our results show that the Dmlc2 gene is pleiotropic and that mutations that have a profound effect on flight mechanics (Phos and Dual) have minimal effects on courtship song. None of the mutations affect interpulse interval (IPI), a determinant of species-specific song, and intrapulse frequency (IPF) compared to Control (Dmlc2 (+) rescued null strain). However, abnormalities in the sine song (increased frequency) and the pulse song (increased cycles per pulse and pulse length) evident in Ext males are not apparent in Dual males suggesting that Ext and Phos interact differently in song and flight mechanics, given their known additive effect on the latter. All three mutant males produce a less vigorous pulse song and exhibit impaired mating behavior compared to Control males. As a result, females are less receptive to Ext, Phos, and Dual males when a Control male is present. These results open the possibility that DMLC2, and perhaps contractile protein genes in general, are partly under sexual selection. That mutations in DMLC2 manifest differently in song and flight suggest that this protein fulfills different roles in song and flight and that stretch activation plays a smaller role in song production than in flight.


Subject(s)
Courtship , Drosophila melanogaster/genetics , Drosophila melanogaster/physiology , Insect Proteins/genetics , Mutation , Myosin Light Chains/genetics , Vocalization, Animal , Animals , Female , Male , Reproduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL