Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Bacteriol ; 206(6): e0008724, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38771039

ABSTRACT

Bacterial meningitis is a life-threatening infection of the central nervous system (CNS) that occurs when bacteria are able to cross the blood-brain barrier (BBB) or the meningeal-cerebrospinal fluid barrier (mBCSFB). The BBB and mBCSFB comprise highly specialized brain endothelial cells (BECs) that typically restrict pathogen entry. Group B Streptococcus (GBS or Streptococcus agalactiae) is the leading cause of neonatal meningitis. Until recently, identification of GBS virulence factors has relied on genetic screening approaches. Instead, we here conducted RNA-seq analysis on GBS when interacting with induced pluripotent stem cell-derived BECs (iBECs) to pinpoint virulence-associated genes. Of the 2,068 annotated protein-coding genes of GBS, 430 transcripts displayed significant changes in expression after interacting with BECs. Notably, we found that the majority of differentially expressed GBS transcripts were downregulated (360 genes) during infection of iBECs. Interestingly, codY, encoding a pleiotropic transcriptional repressor in low-G + C Gram-positive bacteria, was identified as being highly downregulated. We conducted qPCR to confirm the codY downregulation observed via RNA-seq during the GBS-iBEC interaction and obtained codY mutants in three different GBS background parental strains. As anticipated from the RNA-seq results, the [Formula: see text]codY strains were more adherent and invasive in two in vitro BEC models. Together, this demonstrates the utility of RNA-seq during the BEC interaction to identify GBS virulence modulators. IMPORTANCE: Group B Streptococcus (GBS) meningitis remains the leading cause of neonatal meningitis. Research work has identified surface factors and two-component systems that contribute to GBS disruption of the blood-brain barrier (BBB). These discoveries often relied on genetic screening approaches. Here, we provide transcriptomic data describing how GBS changes its transcriptome when interacting with brain endothelial cells. Additionally, we have phenotypically validated these data by obtaining mutants of a select regulator that is highly down-regulated during infection and testing on our BBB model. This work provides the research field with a validated data set that can provide an insight into potential pathways that GBS requires to interact with the BBB and open the door to new discoveries.


Subject(s)
Brain , Endothelial Cells , Streptococcus agalactiae , Transcriptome , Streptococcus agalactiae/genetics , Streptococcus agalactiae/metabolism , Streptococcus agalactiae/pathogenicity , Endothelial Cells/microbiology , Humans , Brain/microbiology , Brain/metabolism , Blood-Brain Barrier/microbiology , Blood-Brain Barrier/metabolism , Gene Expression Regulation, Bacterial , Virulence Factors/genetics , Virulence Factors/metabolism , Virulence , Streptococcal Infections/microbiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Meningitis, Bacterial/microbiology
2.
J Neuroinflammation ; 14(1): 148, 2017 07 24.
Article in English | MEDLINE | ID: mdl-28738885

ABSTRACT

BACKGROUND: MP4-induced experimental autoimmune encephalomyelitis (EAE) is a mouse model of multiple sclerosis (MS), which enables targeted research on B cells, currently much discussed protagonists in MS pathogenesis. Here, we used this model to study the impact of the S1P1 receptor modulator FTY720 (fingolimod) on the autoreactive B cell and antibody response both in the periphery and the central nervous system (CNS). METHODS: MP4-immunized mice were treated orally with FTY720 for 30 days at the peak of disease or 50 days after EAE onset. The subsequent disease course was monitored and the MP4-specific B cell/antibody response was measured by ELISPOT and ELISA. RNA sequencing was performed to determine any effects on B cell-relevant gene expression. S1P1 receptor expression by peripheral T and B cells, B cell subset distribution in the spleen and B cell infiltration into the CNS were studied by flow cytometry. The formation of B cell aggregates and of tertiary lymphoid organs (TLOs) was evaluated by histology and immunohistochemistry. Potential direct effects of FTY720 on B cell aggregation were studied in vitro. RESULTS: FTY720 significantly attenuated clinical EAE when treatment was initiated at the peak of EAE. While there was a significant reduction in the number of T cells in the blood after FTY720 treatment, B cells were only slightly diminished. Yet, there was evidence for the modulation of B cell receptor-mediated signaling upon FTY720 treatment. In addition, we detected a significant increase in the percentage of B220+ B cells in the spleen both in acute and chronic EAE. Whereas acute treatment completely abrogated B cell aggregate formation in the CNS, the numbers of infiltrating B cells and plasma cells were comparable between vehicle- and FTY720-treated mice. In addition, there was no effect on already developed aggregates in chronic EAE. In vitro B cell aggregation assays suggested the absence of a direct effect of FTY720 on B cell aggregation. However, FTY720 impacted the evolution of B cell aggregates into TLOs. CONCLUSIONS: The data suggest differential effects of FTY720 on the B cell compartment in MP4-induced EAE.


Subject(s)
B-Lymphocytes/drug effects , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/pathology , Fingolimod Hydrochloride/therapeutic use , Immunosuppressive Agents/therapeutic use , Animals , Antigens, CD19/metabolism , B-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/pathology , Calcium-Binding Proteins/metabolism , Cell Aggregation/drug effects , Central Nervous System/pathology , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/blood , Encephalomyelitis, Autoimmune, Experimental/chemically induced , Enzyme-Linked Immunospot Assay , Female , Flow Cytometry , Freund's Adjuvant/toxicity , Lymph Nodes/pathology , Mice , Myelin Basic Protein/immunology , Myelin Basic Protein/toxicity , Myelin Proteolipid Protein/immunology , Myelin Proteolipid Protein/toxicity , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/toxicity , Spleen/pathology , Time Factors
3.
Bioinformatics ; 26(23): 2977-8, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-20959381

ABSTRACT

SUMMARY: SmashCommunity is a stand-alone metagenomic annotation and analysis pipeline suitable for data from Sanger and 454 sequencing technologies. It supports state-of-the-art software for essential metagenomic tasks such as assembly and gene prediction. It provides tools to estimate the quantitative phylogenetic and functional compositions of metagenomes, to compare compositions of multiple metagenomes and to produce intuitive visual representations of such analyses. AVAILABILITY: SmashCommunity source code and documentation are available at http://www.bork.embl.de/software/smash CONTACT: bork@embl.de SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Metagenomics/methods , Software , Genes , Molecular Sequence Annotation , Phylogeny , Sequence Analysis, DNA
4.
PLoS One ; 3(12): e3976, 2008.
Article in English | MEDLINE | ID: mdl-19096720

ABSTRACT

Bacterial nitrile hydratase (NHases) are important industrial catalysts and waste water remediation tools. In a global computational screening of conventional and metagenomic sequence data for NHases, we detected the two usually separated NHase subunits fused in one protein of the choanoflagellate Monosiga brevicollis, a recently sequenced unicellular model organism from the closest sister group of Metazoa. This is the first time that an NHase is found in eukaryotes and the first time it is observed as a fusion protein. The presence of an intron, subunit fusion and expressed sequence tags covering parts of the gene exclude contamination and suggest a functional gene. Phylogenetic analyses and genomic context imply a probable ancient horizontal gene transfer (HGT) from proteobacteria. The newly discovered NHase might open biotechnological routes due to its unconventional structure, its new type of host and its apparent integration into eukaryotic protein networks.


Subject(s)
Eukaryota/enzymology , Hydro-Lyases/isolation & purification , Amino Acid Sequence , Animals , Eukaryota/genetics , Eukaryotic Cells/enzymology , Hydro-Lyases/chemistry , Hydro-Lyases/genetics , Hydro-Lyases/metabolism , Models, Biological , Phylogeny , Protein Subunits/chemistry
5.
PLoS One ; 3(10): e3515, 2008.
Article in English | MEDLINE | ID: mdl-18953415

ABSTRACT

BACKGROUND: Polyketides are a diverse group of biotechnologically important secondary metabolites that are produced by multi domain enzymes called polyketide synthases (PKS). METHODOLOGY/PRINCIPAL FINDINGS: We have estimated frequencies of type I PKS (PKS I) - a PKS subgroup - in natural environments by using Hidden-Markov-Models of eight domains to screen predicted proteins from six metagenomic shotgun data sets. As the complex PKS I have similarities to other multi-domain enzymes (like those for the fatty acid biosynthesis) we increased the reliability and resolution of the dataset by maximum-likelihood trees. The combined information of these trees was then used to discriminate true PKS I domains from evolutionary related but functionally different ones. We were able to identify numerous novel PKS I proteins, the highest density of which was found in Minnesota farm soil with 136 proteins out of 183,536 predicted genes. We also applied the protocol to UniRef database to improve the annotation of proteins with so far unknown function and identified some new instances of horizontal gene transfer. CONCLUSIONS/SIGNIFICANCE: The screening approach proved powerful in identifying PKS I sequences in large sequence data sets and is applicable to many other protein families.


Subject(s)
Biolistics/methods , Computational Biology , Databases, Genetic , Polyketide Synthases/genetics , Animals , Decision Trees , Gene Transfer, Horizontal , Genomics/methods , Humans , Likelihood Functions , Markov Chains , Metabolomics/methods , Phylogeny , Polyketide Synthases/analysis , Sequence Analysis, DNA
6.
PLoS One ; 3(7): e2607, 2008 Jul 09.
Article in English | MEDLINE | ID: mdl-18612393

ABSTRACT

BACKGROUND: Environments and their organic content are generally not static and isolated, but in a constant state of exchange and interaction with each other. Through physical or biological processes, organisms, especially microbes, may be transferred between environments whose characteristics may be quite different. The transferred microbes may not survive in their new environment, but their DNA will be deposited. In this study, we compare two environmental sequencing projects to find molecular evidence of transfer of microbes over vast geographical distances. METHODOLOGY: By studying synonymous nucleotide composition, oligomer frequency and orthology between predicted genes in metagenomics data from two environments, terrestrial and aquatic, and by correlating with phylogenetic mappings, we find that both environments are likely to contain trace amounts of microbes which have been far removed from their original habitat. We also suggest a bias in direction from soil to sea, which is consistent with the cycles of planetary wind and water. CONCLUSIONS: Our findings support the Baas-Becking hypothesis formulated in 1934, which states that due to dispersion and population sizes, microbes are likely to be found in widely disparate environments. Furthermore, the availability of genetic material from distant environments is a possible font of novel gene functions for lateral gene transfer.


Subject(s)
Environment , Genes, Bacterial , Ecology , Ecosystem , Gene Transfer, Horizontal , Phylogeny , Water Microbiology
7.
EMBO J ; 26(11): 2658-69, 2007 Jun 06.
Article in English | MEDLINE | ID: mdl-17464285

ABSTRACT

The prothrombin (F2) 3' end formation signal is highly susceptible to thrombophilia-associated gain-of-function mutations. In its unusual architecture, the F2 3' UTR contains an upstream sequence element (USE) that compensates for weak activities of the non-canonical cleavage site and the downstream U-rich element. Here, we address the mechanism of USE function. We show that the F2 USE contains a highly conserved nonameric core sequence, which promotes 3' end formation in a position- and sequence-dependent manner. We identify proteins that specifically interact with the USE, and demonstrate their function as trans-acting factors that promote 3' end formation. Interestingly, these include the splicing factors U2AF35, U2AF65 and hnRNPI. We show that these splicing factors not only modulate 3' end formation via the USEs contained in the F2 and the complement C2 mRNAs, but also in the biocomputationally identified BCL2L2, IVNS and ACTR mRNAs, suggesting a broader functional role. These data uncover a novel mechanism that functionally links the splicing and 3' end formation machineries of multiple cellular mRNAs in an USE-dependent manner.


Subject(s)
3' Untranslated Regions/metabolism , Peptide Fragments/metabolism , Prothrombin/metabolism , RNA 3' End Processing/genetics , RNA Splicing/genetics , RNA-Binding Proteins/metabolism , 3' Untranslated Regions/genetics , Base Sequence , Computational Biology , Gene Components , Humans , Models, Biological , Molecular Sequence Data , Mutation/genetics , Peptide Fragments/genetics , Polyadenylation , Prothrombin/genetics , RNA Interference
8.
Philos Trans R Soc Lond B Biol Sci ; 361(1467): 519-23, 2006 Mar 29.
Article in English | MEDLINE | ID: mdl-16524840

ABSTRACT

Environmental sequencing, also dubbed metagenomics, is increasingly being used to obtain insights into organismal communities in diverse habitats, and has a variety of potential applications foreseeable in biotechnology and medicine. The first public large-scale data provide already a wealth of information hidden in vast amounts of fragmented pieces of DNA from unknown species residing in these environments. Comparative sequence analysis is essential for the interpretation of such data. However, different layers of complexity that are intrinsic to each sample require the establishment of some baselines for comparison: how to normalize for the differences in phylogenetic and functional diversity, how to avoid biases from incomplete data, and how to deal with differences in species dominance or genome sizes? Here we discuss a few of these items and delineate some simple discriminative sequence properties for four distinct habitats.


Subject(s)
Biodiversity , Environmental Microbiology , Evolution, Molecular , Genomics/methods
9.
EMBO Rep ; 6(12): 1208-13, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16200051

ABSTRACT

To test the impact of environments on genome evolution, we analysed the relative abundance of the nucleotides guanine and cytosine ('GC content') of large numbers of sequences from four distinct environmental samples (ocean surface water, farm soil, an acidophilic mine drainage biofilm and deep-sea whale carcasses). We show that the GC content of complex microbial communities seems to be globally and actively influenced by the environment. The observed nucleotide compositions cannot be easily explained by distinct phylogenetic origins of the species in the environments; the genomic GC content may change faster than was previously thought, and is also reflected in the amino-acid composition of the proteins in these habitats.


Subject(s)
Base Composition , Cytosine , Environment , Genome , Guanine , Nucleotides/chemistry , Amino Acids/chemistry , Archaea/genetics , Bacteria/genetics , Evolution, Molecular , Genomics
SELECTION OF CITATIONS
SEARCH DETAIL
...