Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37961509

ABSTRACT

In order to improve vaccine effectiveness and safety profile of existing synthetic RNA-based vaccines, we have developed a self-amplifying RNA (saRNA)-based vaccine expressing membrane-anchored receptor binding domain (RBD) of SARS-CoV-2 S protein (S-RBD) and have demonstrated that a minimal dose of this saRNA vaccine elicits robust immune responses. Results from a recent clinical trial with 5-methylcytidine (5mC) incorporating saRNA vaccine demonstrated reduced vaccine-induced adverse effects while maintaining robust humoral responses. In this study, we investigate the mechanisms accounting for induction of efficient innate and adaptive immune responses and attenuated adverse effects induced by the 5mC-incorporated saRNA. We show that the 5mC-incorporating saRNA platform leads to prolonged and robust expression of antigen, while induction of type-I interferon (IFN-I), a key driver of reactogenicity, is attenuated in peripheral blood mononuclear cells (PBMCs), but not in macrophages and dendritic cells. Interestingly, we find that the major cellular source of IFN-I production in PBMCs is plasmacytoid dendritic cells (pDCs), which is attenuated upon 5mC incorporation in saRNA. In addition, we demonstrate that monocytes also play an important role in amplifying proinflammatory responses. Furthermore, we show that the detection of saRNA is mediated by a host cytosolic RNA sensor, RIG-I. Importantly, 5mC-incorporating saRNA vaccine candidate produced robust IgG responses against S-RBD upon injection in mice, thus providing strong support for the potential clinical use of 5mC-incorporating saRNA vaccines.

2.
Adv Nanobiomed Res ; 2(5)2022 May.
Article in English | MEDLINE | ID: mdl-36313942

ABSTRACT

Herein, lipid-coated mesoporous silica nanoparticles (LMSN) are investigated as biomimetic delivery vehicle for two antiretroviral compounds (ARVs), rilpivirine (RPV) and cabotegravir (CAB). Monosialodihexosylganglioside (GM3) is incorporated into the membrane to facilitate LMSN binding to CD169 (Siglec-1)-expressing myeloid cells, that are predominantly expressed in secondary lymphoid tissues in vivo. It is demonstrated that in addition to providing CD169-binding functionalities, the lipid membrane around the silica core provides stealth properties that dampen the inflammatory cytokine response to ARVs-loaded LMSN in human monocyte-derived macrophages. Quantification of RPV and CAB releases from nanoparticles, and assessment of antiviral potency to human immunodeficiency virus (HIV-1) infection in vitro reveals that RPV and CAB co-formulated into LMSN retain optimal antiviral potency for 90 days, even upon storage at room temperature, making LMSN an attractive nanoplatform, immune to cold chain requirements. These findings suggest that GM3-LMSN equip the mesoporous silica nanoparticle (MSN) core with lipid-derived properties for surface passivation and lipid-mediated binding that are of high interest for achieving an effective delivery of ARVs to tissue reservoirs of HIV-1 replication.

3.
ACS Appl Mater Interfaces ; 14(2): 2488-2500, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-34995059

ABSTRACT

Monosialodihexosylganglioside (GM3)-presenting lipid-coated polymer nanoparticles (NPs) that recapitulate the sequestration of human immunodeficiency virus-1 (HIV-1) particles in CD169+ virus-containing compartments (VCCs) of macrophages were developed as carriers for delivery and sustained release of a combination of two antiretrovirals (ARVs), rilpivirine (RPV) and cabotegravir (CAB). RPV and CAB were co-loaded into GM3-presenting lipid-coated polylactic acid (PLA) and poly(lactic-co-glycolic acid) (PLGA) NPs without loss in potency of the drugs. GM3-presenting PLA NPs demonstrated the most favorable release properties and achieved inhibition of HIV-1 infection of primary human macrophages for up to 35 days. Intracellular localization of GM3-presenting PLA NPs in VCCs correlated with retention of intracellular ARV concentrations and sustained inhibition of HIV-1 infection. This work elucidates the design criteria of lipid-coated polymer NPs to utilize CD169+ macrophages as cellular drug depots for eradicating the viral reservoir sites or to achieve long-acting prophylaxis against HIV-1 infection.


Subject(s)
Anti-HIV Agents/pharmacology , Biocompatible Materials/chemistry , Diketopiperazines/pharmacology , HIV Infections/drug therapy , HIV-1/drug effects , Pyridones/pharmacology , Rilpivirine/pharmacology , Anti-HIV Agents/chemistry , Diketopiperazines/chemistry , Drug Carriers/chemistry , Humans , Liposomes/chemistry , Macrophages/drug effects , Macrophages/virology , Materials Testing , Microbial Sensitivity Tests , Nanoparticles/chemistry , Polyesters/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Pyridones/chemistry , Rilpivirine/chemistry , Sialic Acid Binding Ig-like Lectin 1/antagonists & inhibitors
4.
J Biol Chem ; 292(52): 21578-21589, 2017 12 29.
Article in English | MEDLINE | ID: mdl-29118188

ABSTRACT

RhoGC is a fusion protein from the aquatic fungus Blastocladiella emersonii, combining a type I rhodopsin domain with a guanylyl cyclase domain. It has generated excitement as an optogenetics tool for the manipulation of cyclic nucleotide signaling pathways. To investigate the regulation of the cyclase activity, we isolated the guanylyl cyclase domain from Escherichia coli with (GCwCCRho) and without (GCRho) the coiled-coil linker. Both constructs were constitutively active but were monomeric as determined by size-exclusion chromatography and analytical ultracentrifugation, whereas other class III nucleotidyl cyclases are functional dimers. We also observed that crystals of GCRho have only a monomer in an asymmetric unit. Dimers formed when crystals were grown in the presence of the non-cyclizable substrate analog 2',3'-dideoxyguanosine-5'-triphosphate, MnCl2, and tartrate, but their quaternary structure did not conform to the canonical pairing expected for class III enzymes. Moreover, the structure contained a disulfide bond formed with an active-site Cys residue required for activity. We consider it unlikely that the disulfide would form under intracellular reducing conditions, raising the possibility that this unusual dimer might have a biologically relevant role in the regulation of full-length RhoGC. Although we did not observe it with direct methods, a functional dimer was identified as the active state by following the dependence of activity on total enzyme concentration. The low affinity observed for GCRho monomers is unusual for this enzyme class and suggests that dimer formation may contribute to light activation of the full-length protein.


Subject(s)
Guanylate Cyclase/metabolism , Optogenetics/methods , Rhodopsin/metabolism , Amino Acid Sequence , Blastocladiella/metabolism , Catalytic Domain , Cyclic GMP/metabolism , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Nucleotides, Cyclic/metabolism , Protein Domains , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...