Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Stress Chaperones ; 24(6): 1175-1185, 2019 11.
Article in English | MEDLINE | ID: mdl-31620981

ABSTRACT

Increased oxidative stress is a frequent feature in Duchenne muscular dystrophy (DMD). High reactive oxygen species (ROS) levels, associated with altered enzyme antioxidant activity, have been reported in dystrophic patients and mdx mice, an experimental model of DMD. In this study, we investigated the effects of coenzyme Q10 (CoQ10) on oxidative stress marker levels and calcium concentration in primary cultures of dystrophic muscle cells from mdx mice. Primary cultures of skeletal muscle cells from C57BL/10 and mdx mice were treated with coenzyme Q10 (5 µM) for 24 h. The untreated mdx and C57BL/10 muscle cells were used as controls. The MTT and live/dead cell assays showed that CoQ10 presented no cytotoxic effect on normal and dystrophic muscle cells. Intracellular calcium concentration, H2O2 production, 4-HNE, and SOD-2 levels were higher in mdx muscle cells. No significant difference in the catalase, GPx, and Gr levels was found between experimental groups. This study demonstrated that CoQ10 treatment was able to reduce levels of oxidative stress markers, such as H2O2, acting as an antioxidant, as well as decreasing abnormal intracellular calcium influx in dystrophic muscles cells. This study demonstrated that CoQ10 treatment was able to reduce levels of oxidative stress markers, such as H2O2, acting as an antioxidant, as well as decreasing abnormal intracellular calcium influx in dystrophic muscles cells. Our findings also suggest that the decrease of oxidative stress reduces the need for upregulation of antioxidant pathways, such as SOD and GSH.


Subject(s)
Antioxidants/pharmacology , Muscle Fibers, Skeletal/drug effects , Muscle, Skeletal/drug effects , Muscular Dystrophy, Duchenne/drug therapy , Oxidative Stress/drug effects , Ubiquinone/analogs & derivatives , Animals , Calcium/metabolism , Cells, Cultured , Dietary Supplements , Female , Hydrogen Peroxide/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Inbred mdx , Muscle Fibers, Skeletal/pathology , Muscle, Skeletal/pathology , Reactive Oxygen Species/metabolism , Ubiquinone/pharmacology , Vitamins/pharmacology
2.
Clin Exp Pharmacol Physiol ; 43(2): 259-67, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26639107

ABSTRACT

This study evaluated the possible protective effects of cilostazol against myonecrosis in dystrophic diaphragm muscle in vivo, focusing on oxidative stress, the inflammatory response and angiogenesis. Young mdx mice, the experimental animal for Duchenne muscular dystrophy, received cilostazol for 14 days. A second group of mdx mice and a control group of C57BL/10 mice received a saline solution. In the mdx mice, cilostazol treatment was associated with reduced loss of muscle strength (-34.4%), decreased myonecrosis, reduced creatine kinase levels (-63.3%) and muscle fibres stained for immunoglobulin G in dystrophic diaphragm muscle (-81.1%), and a reduced inflammatory response, with a decreased inflammatory area (-22%), macrophage infiltration (-44.9%) and nuclear factor-κB (-24%) and tumour necrosis factor-α (-48%) content in dystrophic diaphragm muscle. Furthermore, cilostazol decreased oxidative stress and attenuated reactive oxygen species production (-74%) and lipid peroxidation (-17%) in dystrophic diaphragm muscle, and promoted the up-regulation of angiogenesis, increasing the number of microvessels (15%). In conclusion, the present results show that cilostazol has beneficial effects in dystrophic muscle. More research into the potential of cilostazol as a novel therapeutic agent for the treatment of dystrophinopathies is required.


Subject(s)
Muscle, Skeletal/drug effects , Tetrazoles/pharmacology , Animals , Body Weight/drug effects , Cilostazol , Creatine Kinase/blood , Diaphragm/drug effects , Female , Male , Mice , Mice, Inbred mdx , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Dystrophy, Duchenne/blood , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology , Necrosis/prevention & control , Oxidative Stress/drug effects , Phenotype
3.
PLoS One ; 10(6): e0128567, 2015.
Article in English | MEDLINE | ID: mdl-26083527

ABSTRACT

The present study evaluated low-level laser therapy (LLLT) effects on some physiological pathways that may lead to muscle damage or regeneration capacity in dystrophin-deficient muscle cells of mdx mice, the experimental model of Duchenne muscular dystrophy (DMD). Primary cultures of mdx skeletal muscle cells were irradiated only one time with laser and analyzed after 24 and 48 hours. The LLLT parameter used was 830 nm wavelengths at 5 J/cm² fluence. The following groups were set up: Ctrl (untreated C57BL/10 primary muscle cells), mdx (untreated mdx primary muscle cells), mdx LA 24 (mdx primary muscle cells - LLLT irradiated and analyzed after 24 h), and mdx LA 48 (mdx primary muscle cells - LLLT irradiated and analyzed after 48 h). The mdx LA 24 and mdx LA 48 groups showed significant increase in cell proliferation, higher diameter in muscle cells and decreased MyoD levels compared to the mdx group. The mdx LA 48 group showed significant increase in Myosin Heavy Chain levels compared to the untreated mdx and mdx LA 24 groups. The mdx LA 24 and mdx LA 48 groups showed significant increase in [Ca2+]i. The mdx group showed significant increase in H2O2 production and 4-HNE levels compared to the Ctrl group and LLLT treatment reduced this increase. GSH levels and GPx, GR and SOD activities increased in the mdx group. Laser treatment reduced the GSH levels and GR and SOD activities in dystrophic muscle cells. The mdx group showed significant increase in the TNF-α and NF-κB levels, which in turn was reduced by the LLLT treatment. Together, these results suggest that the laser treatment improved regenerative capacity and decreased inflammatory response and oxidative stress in dystrophic muscle cells, indicating that LLLT could be a helpful alternative therapy to be associated with other treatment for dystrophinopathies.


Subject(s)
Dystrophin/metabolism , Inflammation/metabolism , Lasers, Solid-State , Oxidative Stress/radiation effects , Regeneration/radiation effects , Animals , Calcium/metabolism , Cells, Cultured , Dystrophin/genetics , Hydrogen Peroxide/metabolism , Lasers, Solid-State/therapeutic use , Low-Level Light Therapy , Mice , Mice, Inbred C57BL , Mice, Inbred mdx , Muscle, Skeletal/cytology , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology , Muscular Dystrophy, Duchenne/radiotherapy , Myosin Heavy Chains/metabolism , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...