Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
2.
Nat Methods ; 18(12): 1489-1495, 2021 12.
Article in English | MEDLINE | ID: mdl-34862503

ABSTRACT

For quality, interpretation, reproducibility and sharing value, microscopy images should be accompanied by detailed descriptions of the conditions that were used to produce them. Micro-Meta App is an intuitive, highly interoperable, open-source software tool that was developed in the context of the 4D Nucleome (4DN) consortium and is designed to facilitate the extraction and collection of relevant microscopy metadata as specified by the recent 4DN-BINA-OME tiered-system of Microscopy Metadata specifications. In addition to substantially lowering the burden of quality assurance, the visual nature of Micro-Meta App makes it particularly suited for training purposes.


Subject(s)
Metadata , Microscopy, Confocal/instrumentation , Microscopy, Confocal/methods , Microscopy, Fluorescence/instrumentation , Microscopy, Fluorescence/methods , Mobile Applications , Programming Languages , Software , Animals , Cell Line , Computational Biology/methods , Humans , Image Processing, Computer-Assisted , Mice , Pattern Recognition, Automated , Quality Control , Reproducibility of Results , User-Computer Interface , Workflow
3.
J Cell Physiol ; 236(8): 5937-5952, 2021 08.
Article in English | MEDLINE | ID: mdl-33452672

ABSTRACT

A persistent basal tone in the internal anal sphincter (IAS) is essential for keeping the anal canal closed and fecal continence; its inhibition via the rectoanal inhibitory reflex (RAIR) is required for successful defecation. However, cellular signals underlying the IAS basal tone remain enigmatic. Here we report the origin and molecular mechanisms of calcium signals that control the IAS basal tone, using a combination approach including a novel IAS slice preparation that retains cell arrangement and architecture as in vivo, 2-photon imaging, and cell-specific gene-modified mice. We found that IAS smooth muscle cells generate two forms of contractions (i.e., phasic and sustained contraction) and Ca2+ signals (i.e., synchronized Ca2+ oscillations [SCaOs] and asynchronized Ca2+ oscillations [ACaOs]) that last for hours. RyRs, TMEM16A, L-type Ca2+ channels, and gap junctions are required for SCaOs, which account for phasic contraction and 75% of sustained contraction. Nevertheless, only RyRs are required for ACaOs, which contribute 25% of sustained contraction. Nitric oxide, the primary neurotransmitter mediating the RAIR, blocks both types of Ca2+ signals, leading to IAS's full relaxation. Our results show that the oscillating nature of Ca2+ signals generates and maintains the basal tone without causing cytotoxicity to IAS. Our study provides insight into fecal continence and normal defecation.


Subject(s)
Anal Canal/metabolism , Calcium Signaling/physiology , Calcium/metabolism , Muscle, Smooth/metabolism , Myocytes, Smooth Muscle/metabolism , Animals , Mice , Muscle Contraction/physiology , Nitric Oxide/metabolism , Reflex/physiology
4.
J Gen Physiol ; 152(6)2020 06 01.
Article in English | MEDLINE | ID: mdl-31978216

ABSTRACT

Small-molecule fluorescent wheat germ agglutinin (WGA) conjugates are routinely used to demarcate mammalian plasma membranes, because they bind to the cell's glycocalyx. Here, we describe the derivatization of WGA with a pH-sensitive rhodamine fluorophore (pHRho; pKa = 7) to detect proton channel fluxes and extracellular proton accumulation and depletion from primary cells. We found that WGA-pHRho labeling was uniform and did not appreciably alter the voltage gating of glycosylated ion channels, and the extracellular changes in pH correlated with proton channel activity. Using single-plane illumination techniques, WGA-pHRho was used to detect spatiotemporal differences in proton accumulation and depletion over the extracellular surface of cardiomyocytes, astrocytes, and neurons. Because WGA can be derivatized with any small-molecule fluorescent ion sensor, WGA conjugates should prove useful to visualize most electrogenic and nonelectrogenic events on the extracellular side of the plasma membrane.


Subject(s)
Cell Membrane/chemistry , Protons , Wheat Germ Agglutinins/chemistry , Animals , Glycosylation , Hydrogen-Ion Concentration
5.
J Neurosci ; 37(39): 9438-9452, 2017 09 27.
Article in English | MEDLINE | ID: mdl-28847807

ABSTRACT

Presynaptic reuptake, mediated by the dopamine (DA) transporter (DAT), terminates DAergic neurotransmission and constrains extracellular DA levels. Addictive and therapeutic psychostimulants inhibit DA reuptake and multiple DAT coding variants have been reported in patients with neuropsychiatric disorders. These findings underscore that DAT is critical for DA neurotransmission and homeostasis. DAT surface availability is regulated acutely by endocytic trafficking, and considerable effort has been directed toward understanding mechanisms that govern DAT's plasma membrane expression and postendocytic fate. Multiple studies have demonstrated DAT endocytic recycling and enhanced surface delivery in response to various stimuli. Paradoxically, imaging studies have not detected DAT targeting to classic recycling endosomes, suggesting that internalized DAT targets to either degradation or an undefined recycling compartment. Here, we leveraged PRIME (PRobe Incorporation Mediated by Enzyme) labeling to couple surface DAT directly to fluorophore, and tracked DAT's postendocytic itinerary in immortalized mesencephalic cells. Following internalization, DAT robustly targeted to retromer-positive endosomes, and DAT/retromer colocalization was observed in male mouse dopaminergic somatodendritic and terminal regions. Short hairpin RNA-mediated Vps35 knockdown revealed that DAT endocytic recycling requires intact retromer. DAT also targeted rab7-positive endosomes with slow, linear kinetics that were unaffected by either accelerating DAT internalization or binding a high-affinity cocaine analog. However, cocaine increased DAT exit from retromer-positive endosomes significantly. Finally, we found that the DAT carboxy-terminal PDZ-binding motif was required for DAT recycling and exit from retromer. These results define the DAT recycling mechanism and provide a unifying explanation for previous, seemingly disparate, DAT endocytic trafficking findings.SIGNIFICANCE STATEMENT The neuronal dopamine (DA) transporter (DAT) recaptures released DA and modulates DAergic neurotransmission, and a number of DAT coding variants have been reported in several DA-related disorders, including infantile parkinsonism, attention-deficit/hyperactivity disorder and autism spectrum disorder. DAT is also competitively inhibited by psychostimulants with high abuse potential. Therefore, mechanisms that acutely affect DAT availability will likely exert significant impact on both normal and pathological DAergic homeostasis. Here, we explore the cellular mechanisms that acutely control DAT surface expression. Our results reveal the intracellular mechanisms that mediate DAT endocytic recycling following constitutive and regulated internalization. In addition to shedding light on this critical process, these findings resolve conflict among multiple, seemingly disparate, previous reports on DAT's postendocytic fate.


Subject(s)
Dopamine Plasma Membrane Transport Proteins/metabolism , Endocytosis , Animals , Cell Membrane/metabolism , Dopamine Plasma Membrane Transport Proteins/chemistry , Endosomes/metabolism , HEK293 Cells , Humans , Male , Mesencephalon/cytology , Mice , Mice, Inbred C57BL , Neurons/metabolism , Presynaptic Terminals/metabolism , Protein Sorting Signals , Protein Transport , Rats
6.
Nat Commun ; 7: 11358, 2016 Apr 22.
Article in English | MEDLINE | ID: mdl-27101932

ABSTRACT

Smooth muscle sphincters exhibit basal tone and control passage of contents through organs such as the gastrointestinal tract; loss of this tone leads to disorders such as faecal incontinence. However, the molecular mechanisms underlying this tone remain unknown. Here, we show that deletion of myosin light-chain kinases (MLCK) in the smooth muscle cells from internal anal sphincter (IAS-SMCs) abolishes basal tone, impairing defecation. Pharmacological regulation of ryanodine receptors (RyRs), L-type voltage-dependent Ca(2+) channels (VDCCs) or TMEM16A Ca(2+)-activated Cl(-) channels significantly changes global cytosolic Ca(2+) concentration ([Ca(2+)]i) and the tone. TMEM16A deletion in IAS-SMCs abolishes the effects of modulators for TMEM16A or VDCCs on a RyR-mediated rise in global [Ca(2+)]i and impairs the tone and defecation. Hence, MLCK activation in IAS-SMCs caused by a global rise in [Ca(2+)]i via a RyR-TMEM16A-VDCC signalling module sets the basal tone. Targeting this module may lead to new treatments for diseases like faecal incontinence.


Subject(s)
Anal Canal/metabolism , Calcium Channels, L-Type/metabolism , Chloride Channels/metabolism , Fecal Incontinence/metabolism , Muscle Hypotonia/metabolism , Myosin-Light-Chain Kinase/genetics , Ryanodine Receptor Calcium Release Channel/metabolism , Anal Canal/drug effects , Anal Canal/physiopathology , Animals , Anoctamin-1 , Bethanechol/pharmacology , Calcium/metabolism , Calcium Channels, L-Type/genetics , Calcium Signaling , Chloride Channels/genetics , Defecation/drug effects , Fecal Incontinence/genetics , Fecal Incontinence/physiopathology , Female , Gene Expression Regulation , Humans , Male , Membrane Potentials/drug effects , Membrane Potentials/physiology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Muscle Contraction/drug effects , Muscle Hypotonia/genetics , Muscle Hypotonia/physiopathology , Muscle, Smooth/drug effects , Muscle, Smooth/metabolism , Muscle, Smooth/physiopathology , Myosin-Light-Chain Kinase/deficiency , Nifedipine/pharmacology , Niflumic Acid/pharmacology , Patch-Clamp Techniques , Ryanodine Receptor Calcium Release Channel/genetics
7.
Proc Natl Acad Sci U S A ; 112(50): 15480-5, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26621748

ABSTRACT

The dopamine (DA) transporter (DAT) facilitates high-affinity presynaptic DA reuptake that temporally and spatially constrains DA neurotransmission. Aberrant DAT function is implicated in attention-deficit/hyperactivity disorder and autism spectrum disorder. DAT is a major psychostimulant target, and psychostimulant reward strictly requires binding to DAT. DAT function is acutely modulated by dynamic membrane trafficking at the presynaptic terminal and a PKC-sensitive negative endocytic mechanism, or "endocytic brake," controls DAT plasma membrane stability. However, the molecular basis for the DAT endocytic brake is unknown, and it is unknown whether this braking mechanism is unique to DAT or common to monoamine transporters. Here, we report that the cdc42-activated, nonreceptor tyrosine kinase, Ack1, is a DAT endocytic brake that stabilizes DAT at the plasma membrane and is released in response to PKC activation. Pharmacologic and shRNA-mediated Ack1 silencing enhanced basal DAT internalization and blocked PKC-stimulated DAT internalization, but had no effects on SERT endocytosis. Both cdc42 activation and PKC stimulation converge on Ack1 to control Ack1 activity and DAT endocytic capacity, and Ack1 inactivation is required for stimulated DAT internalization downstream of PKC activation. Moreover, constitutive Ack1 activation is sufficient to rescue the gain-of-function endocytic phenotype exhibited by the ADHD DAT coding variant, R615C. These findings reveal a unique endocytic control switch that is highly specific for DAT. Moreover, the ability to rescue the DAT(R615C) coding variant suggests that manipulating DAT trafficking mechanisms may be a potential therapeutic approach to correct DAT coding variants that exhibit trafficking dysregulation.


Subject(s)
Attention Deficit Disorder with Hyperactivity/genetics , Dopamine Plasma Membrane Transport Proteins/metabolism , Endocytosis , Protein-Tyrosine Kinases/metabolism , Cell Membrane/metabolism , Clathrin/metabolism , Dopaminergic Neurons/metabolism , Gene Knockdown Techniques , Humans , Models, Biological , Mutation , Protein Kinase C/metabolism , Protein Stability , Protein Transport , RNA, Small Interfering/metabolism , Serotonin/metabolism , cdc42 GTP-Binding Protein/metabolism
8.
J Cell Sci ; 127(Pt 21): 4714-27, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25150219

ABSTRACT

The protein nephrocystin-4 (NPHP4) is widespread in ciliated organisms, and defects in NPHP4 cause nephronophthisis and blindness in humans. To learn more about the function of NPHP4, we have studied it in Chlamydomonas reinhardtii. NPHP4 is stably incorporated into the distal part of the flagellar transition zone, close to the membrane and distal to CEP290, another transition zone protein. Therefore, these two proteins, which are incorporated into the transition zone independently of each other, define different domains of the transition zone. An nphp4-null mutant forms flagella with nearly normal length, ultrastructure and intraflagellar transport. When fractions from isolated wild-type and nphp4 flagella were compared, few differences were observed between the axonemes, but the amounts of certain membrane proteins were greatly reduced in the mutant flagella, and cellular housekeeping proteins >50 kDa were no longer excluded from mutant flagella. Therefore, NPHP4 functions at the transition zone as an essential part of a barrier that regulates both membrane and soluble protein composition of flagella. The phenotypic consequences of NPHP4 mutations in humans likely follow from protein mislocalization due to defects in the transition zone barrier.


Subject(s)
Chlamydomonas reinhardtii/metabolism , Cilia/metabolism , Flagella/metabolism , Membrane Proteins/metabolism , Cell Movement/physiology , Protein Transport/physiology
9.
J Physiol ; 592(21): 4639-55, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25128575

ABSTRACT

Adrenal chromaffin cells (ACCs), stimulated by the splanchnic nerve, generate action potentials (APs) at a frequency near 0.5 Hz in the resting physiological state, at times described as 'rest and digest'. How such low frequency stimulation in turn elicits sufficient catecholamine exocytosis to set basal sympathetic tone is not readily explained by the classical mechanism of stimulus-secretion coupling, where exocytosis is synchronized to AP-induced Ca(2+) influx. By using simulated action potentials (sAPs) at 0.5 Hz in isolated patch-clamped mouse ACCs, we show here that less than 10% of all catecholaminergic exocytosis, measured by carbon fibre amperometry, is synchronized to an AP. The asynchronous phase, the dominant phase, of exocytosis does not require Ca(2+) influx. Furthermore, increased asynchronous exocytosis is accompanied by an AP-dependent decrease in frequency of Ca(2+) syntillas (i.e. transient, focal Ca(2+) release from internal stores) and is ryanodine sensitive. We propose a mechanism of disinhibition, wherein APs suppress Ca(2+) syntillas, which themselves inhibit exocytosis as they do in the case of spontaneous catecholaminergic exocytosis.


Subject(s)
Adrenal Glands/cytology , Calcium Signaling/physiology , Calcium/metabolism , Catecholamines/metabolism , Chromaffin Cells/metabolism , Action Potentials , Animals , Cells, Cultured , Male , Mice , Patch-Clamp Techniques , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/metabolism
10.
J Neurosci ; 33(45): 17836-46, 2013 Nov 06.
Article in English | MEDLINE | ID: mdl-24198373

ABSTRACT

Dopaminergic signaling profoundly impacts rewarding behaviors, movement, and executive function. The presynaptic dopamine (DA) transporter (DAT) recaptures released DA, thereby limiting synaptic DA availability and maintaining dopaminergic tone. DAT constitutively internalizes and PKC activation rapidly accelerates DAT endocytosis, resulting in DAT surface loss. Longstanding evidence supports PKC-stimulated DAT trafficking in heterologous expression studies. However, PKC-stimulated DAT internalization is not readily observed in cultured dopaminergic neurons. Moreover, conflicting reports implicate both classic and nonclassic endocytic mechanisms mediating DAT trafficking. Prior DAT trafficking studies relied primarily upon chronic gene disruption and dominant-negative protein expression, or were performed in cell lines and cultured neurons, yielding results difficult to translate to adult dopaminergic neurons. Here, we use newly described dynamin inhibitors to test whether constitutive and PKC-stimulated DAT internalization are dynamin-dependent in adult dopaminergic neurons. Ex vivo biotinylation studies in mouse striatal slices demonstrate that acute PKC activation drives native DAT surface loss, and that surface DAT surprisingly partitions between endocytic-willing and endocytic-resistant populations. Acute dynamin inhibition reveals that constitutive DAT internalization is dynamin-independent, whereas PKC-stimulated DAT internalization is dynamin-dependent. Moreover, total internal reflection fluorescence microscopy experiments demonstrate that constitutive DAT internalization occurs equivalently from lipid raft and nonraft microdomains, whereas PKC-stimulated DAT internalization arises exclusively from lipid rafts. Finally, DAT endocytic recycling relies on a dynamin-dependent mechanism that acts in concert with the actin cytoskeleton. These studies are the first comprehensive investigation of native DAT trafficking in ex vivo adult neurons, and reveal that DAT surface dynamics are governed by complex multimodal mechanisms.


Subject(s)
Corpus Striatum/metabolism , Cytoskeleton/metabolism , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopaminergic Neurons/metabolism , Dynamins/metabolism , Endocytosis/physiology , Animals , Cell Line, Tumor , Corpus Striatum/cytology , Dopaminergic Neurons/cytology , Humans , Male , Mice , Protein Transport/physiology
11.
PLoS Biol ; 11(3): e1001501, 2013.
Article in English | MEDLINE | ID: mdl-23472053

ABSTRACT

Bronchodilators are a standard medicine for treating airway obstructive diseases, and ß2 adrenergic receptor agonists have been the most commonly used bronchodilators since their discovery. Strikingly, activation of G-protein-coupled bitter taste receptors (TAS2Rs) in airway smooth muscle (ASM) causes a stronger bronchodilation in vitro and in vivo than ß2 agonists, implying that new and better bronchodilators could be developed. A critical step towards realizing this potential is to understand the mechanisms underlying this bronchodilation, which remain ill-defined. An influential hypothesis argues that bitter tastants generate localized Ca(2+) signals, as revealed in cultured ASM cells, to activate large-conductance Ca(2+)-activated K(+) channels, which in turn hyperpolarize the membrane, leading to relaxation. Here we report that in mouse primary ASM cells bitter tastants neither evoke localized Ca(2+) events nor alter spontaneous local Ca(2+) transients. Interestingly, they increase global intracellular [Ca(2+)]i, although to a much lower level than bronchoconstrictors. We show that these Ca(2+) changes in cells at rest are mediated via activation of the canonical bitter taste signaling cascade (i.e., TAS2R-gustducin-phospholipase Cß [PLCß]- inositol 1,4,5-triphosphate receptor [IP3R]), and are not sufficient to impact airway contractility. But activation of TAS2Rs fully reverses the increase in [Ca(2+)]i induced by bronchoconstrictors, and this lowering of the [Ca(2+)]i is necessary for bitter tastant-induced ASM cell relaxation. We further show that bitter tastants inhibit L-type voltage-dependent Ca(2+) channels (VDCCs), resulting in reversal in [Ca(2+)]i, and this inhibition can be prevented by pertussis toxin and G-protein ßγ subunit inhibitors, but not by the blockers of PLCß and IP3R. Together, we suggest that TAS2R stimulation activates two opposing Ca(2+) signaling pathways via Gßγ to increase [Ca(2+)]i at rest while blocking activated L-type VDCCs to induce bronchodilation of contracted ASM. We propose that the large decrease in [Ca(2+)]i caused by effective tastant bronchodilators provides an efficient cell-based screening method for identifying potent dilators from among the many thousands of available bitter tastants.


Subject(s)
Bronchi/drug effects , Bronchi/metabolism , Bronchodilator Agents/pharmacology , Muscle, Smooth/drug effects , Muscle, Smooth/metabolism , Taste , Animals , Calcium/metabolism , Chloroquine/pharmacology , Immunohistochemistry , In Vitro Techniques , Mice , Mice, Inbred C57BL
13.
Proc Natl Acad Sci U S A ; 109(8): E471-80, 2012 Feb 21.
Article in English | MEDLINE | ID: mdl-22308388

ABSTRACT

Cell surface receptors and other proteins internalize through diverse mechanisms at the plasma membrane and are sorted to different destinations. Different subpopulations of early endosomes have been described, raising the question of whether different internalization mechanisms deliver cargo into different subsets of early endosomes. To address this fundamental question, we developed a microscopy platform to detect the precise position of endosomes relative to the plasma membrane during the uptake of ligands. Axial resolution is maximized by concurrently applied total internal reflection fluorescence and epifluorescence-structured light. We found that transferrin receptors are delivered selectively from clathrin-coated pits on the plasma membrane into a specific subpopulation of endosomes enriched in the multivalent Rab GTPase and phosphoinositide-binding protein Rabenosyn-5. Depletion of Rabenosyn-5, but not of other early endosomal proteins such as early endosome antigen 1, resulted in impaired transferrin uptake and lysosomal degradation of transferrin receptors. These studies reveal a critical role for Rabenosyn-5 in determining the fate of transferrin receptors internalized by clathrin-mediated endocytosis and, more broadly, a mechanism whereby the delivery of cargo from the plasma membrane into specific early endosome subpopulations is required for its appropriate intracellular traffic.


Subject(s)
Clathrin/metabolism , Endocytosis , Receptors, Transferrin/metabolism , Vesicular Transport Proteins/metabolism , Animals , COS Cells , Cell Membrane/metabolism , Chlorocebus aethiops , Endosomes/metabolism , Humans , Protein Transport , Time Factors
14.
Proc Natl Acad Sci U S A ; 109(2): 610-5, 2012 Jan 10.
Article in English | MEDLINE | ID: mdl-22203976

ABSTRACT

The type 1 ryanodine receptor (RyR1) is expressed widely in the brain, with high levels in the cerebellum, hippocampus, and hypothalamus. We have shown that L-type Ca(2+) channels in terminals of hypothalamic magnocellular neurons are coupled to RyRs, as they are in skeletal muscle, allowing voltage-induced Ca(2+) release (VICaR) from internal Ca(2+) stores without Ca(2+) influx. Here we demonstrate that RyR1 plays a role in VICaR in nerve terminals. Furthermore, in heterozygotes from the Ryr1(I4895T/WT) (IT/+) mouse line, carrying a knock-in mutation corresponding to one that causes a severe form of human central core disease, VICaR is absent, demonstrating that type 1 RyR mediates VICaR and that these mice have a neuronal phenotype. The absence of VICaR was shown in two ways: first, depolarization in the absence of Ca(2+) influx elicited Ca(2+)syntillas (scintilla, spark, in a nerve terminal, a SYNaptic structure) in WT, but not in mutant terminals; second, in the presence of extracellular Ca(2+), IT/+ terminals showed a twofold decrease in global Ca(2+) transients, with no change in plasmalemmal Ca(2+) current. From these studies we draw two conclusions: (i) RyR1 plays a role in VICaR in hypothalamic nerve terminals; and (ii) a neuronal alteration accompanies the myopathy in IT/+ mice, and, possibly in humans carrying the corresponding RyR1 mutation.


Subject(s)
Calcium Channels, L-Type/metabolism , Calcium/metabolism , Hypothalamus/cytology , Myopathy, Central Core/genetics , Neurons/metabolism , Presynaptic Terminals/metabolism , Ryanodine Receptor Calcium Release Channel/genetics , Animals , Fluorescence , Gene Knock-In Techniques , Hypothalamus/metabolism , Mice , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Ryanodine Receptor Calcium Release Channel/metabolism
15.
J Gen Physiol ; 138(2): 195-209, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21746845

ABSTRACT

Short-lived, localized Ca(2+) events mediate Ca(2+) signaling with high efficiency and great fidelity largely as a result of the close proximity between Ca(2+)-permeable ion channels and their molecular targets. However, in most cases, direct evidence of the spatial relationship between these two types of molecules is lacking, and, thus, mechanistic understanding of local Ca(2+) signaling is incomplete. In this study, we use an integrated approach to tackling this issue on a prototypical local Ca(2+) signaling system composed of Ca(2+) sparks resulting from the opening of ryanodine receptors (RYRs) and spontaneous transient outward currents (STOCs) caused by the opening of Ca(2+)-activated K(+) (BK) channels in airway smooth muscle. Biophysical analyses of STOCs and Ca(2+) sparks acquired at 333 Hz demonstrate that these two events are associated closely in time, and approximately eight RYRs open to give rise to a Ca(2+) spark, which activates ∼15 BK channels to generate a STOC at 0 mV. Dual immunocytochemistry and 3-D deconvolution at high spatial resolution reveal that both RYRs and BK channels form clusters and RYR1 and RYR2 (but not RYR3) localize near the membrane. Using the spatial relationship between RYRs and BK channels, the spatial-temporal profile of [Ca(2+)] resulting from Ca(2+) sparks, and the kinetic model of BK channels, we estimate that an average Ca(2+) spark caused by the opening of a cluster of RYR1 or RYR2 acts on BK channels from two to three clusters that are randomly distributed within an ∼600-nm radius of RYRs. With this spatial organization of RYRs and BK channels, we are able to model BK channel currents with the same salient features as those observed in STOCs across a range of physiological membrane potentials. Thus, this study provides a mechanistic understanding of the activation of STOCs by Ca(2+) sparks using explicit knowledge of the spatial relationship between RYRs (the Ca(2+) source) and BK channels (the Ca(2+) target).


Subject(s)
Calcium Signaling/physiology , Calcium/metabolism , Membrane Potentials/physiology , Potassium Channels, Calcium-Activated/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Animals , Ion Channels/chemistry , Ion Channels/metabolism , Male , Mice , Models, Theoretical , Muscle Cells/metabolism , Muscle, Smooth/metabolism , Patch-Clamp Techniques/methods , Potassium Channels, Calcium-Activated/chemistry , Protein Isoforms/metabolism , Ryanodine Receptor Calcium Release Channel/chemistry
16.
Arch Pathol Lab Med ; 135(2): 255-63, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21284447

ABSTRACT

CONTEXT: Advances in microscopy enable visualization of a broad range of new morphologic features. OBJECTIVE: To review and illustrate advances in microscopy with relevance to pathologists. DATA SOURCES: Literature review and new observations. RESULTS: Fluorescence microscopy enables multiantigen detection; allows novel optical-sectioning techniques, with some advantages compared to paraffin sectioning; and permits live-cell imaging. Live-cell imaging allows pathologists to move from a period when all diagnostic expertise was reliant on interpreting static images to a period when cellular dynamics can play a role in diagnosis. New techniques have bypassed by about 100-fold what had long been believed to be a limit to the resolution of light microscopy. Fluorescence resonance energy transfer (FRET) appears capable of visualizing diagnostically relevant molecular events in living or fixed cells that are immeasurable by other molecular techniques. We describe applications of 2-photon microscopy, FRET, structured illumination, and the subdiffraction techniques of near-field microscopy, photoactivated localization microscopy, stochastic optical reconstruction microscopy, and stimulated emission depletion microscopy. CONCLUSION: New microscopy techniques present opportunities for pathologists to develop improved diagnostic tests.


Subject(s)
Microscopy/instrumentation , Microscopy/methods , Microscopy/trends , Animals , Humans , Pathology/instrumentation , Pathology/methods , Pathology/trends
17.
J Biol Chem ; 285(36): 27581-9, 2010 Sep 03.
Article in English | MEDLINE | ID: mdl-20587420

ABSTRACT

Protein kinase B/Akt protein kinases control an array of diverse functions, including cell growth, survival, proliferation, and metabolism. We report here the identification of pleckstrin homology-like domain family B member 1 (PHLDB1) as an insulin-responsive protein that enhances Akt activation. PHLDB1 contains a pleckstrin homology domain, which we show binds phosphatidylinositol PI(3,4)P(2), PI(3,5)P(2), and PI(3,4,5)P(3), as well as a Forkhead-associated domain and coiled coil regions. PHLDB1 expression is increased during adipocyte differentiation, and it is abundant in many mouse tissues. Both endogenous and HA- or GFP-tagged PHLDB1 displayed a cytoplasmic disposition in unstimulated cultured adipocytes but translocated to the plasma membrane in response to insulin. Depletion of PHLDB1 by siRNA inhibited insulin stimulation of Akt phosphorylation but not tyrosine phosphorylation of IRS-1. RNAi-based silencing of PHLDB1 in cultured adipocytes also attenuated insulin-stimulated deoxyglucose transport and Myc-GLUT4-EGFP translocation to the plasma membrane, whereas knockdown of the PHLDB1 isoform PHLDB2 failed to attenuate insulin-stimulated deoxyglucose transport. Furthermore, adenovirus-mediated expression of PHLDB1 in adipocytes enhanced insulin-stimulated Akt and p70 S6 kinase phosphorylation, as well as GLUT4 translocation. These results indicate that PHLDB1 is a novel modulator of Akt protein kinase activation by insulin.


Subject(s)
Adipocytes/drug effects , Adipocytes/metabolism , Glucose Transporter Type 4/metabolism , Insulin/pharmacology , Intracellular Signaling Peptides and Proteins/metabolism , Proto-Oncogene Proteins c-akt/metabolism , 3T3-L1 Cells , Animals , Blood Proteins/chemistry , Enzyme Activation/drug effects , Gene Expression Regulation/drug effects , Gene Silencing , Glucose/metabolism , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/deficiency , Intracellular Signaling Peptides and Proteins/genetics , Mice , Phosphatidylinositol Phosphates/metabolism , Phosphoproteins/chemistry , Phosphorylation/drug effects , Protein Structure, Tertiary , Protein Transport/drug effects , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Sequence Homology, Amino Acid
18.
Nature ; 464(7292): 1196-200, 2010 Apr 22.
Article in English | MEDLINE | ID: mdl-20364122

ABSTRACT

Within the circulatory system, blood flow regulates vascular remodelling, stimulates blood stem cell formation, and has a role in the pathology of vascular disease. During vertebrate embryogenesis, vascular patterning is initially guided by conserved genetic pathways that act before circulation. Subsequently, endothelial cells must incorporate the mechanosensory stimulus of blood flow with these early signals to shape the embryonic vascular system. However, few details are known about how these signals are integrated during development. To investigate this process, we focused on the aortic arch (AA) blood vessels, which are known to remodel in response to blood flow. By using two-photon imaging of live zebrafish embryos, we observe that flow is essential for angiogenesis during AA development. We further find that angiogenic sprouting of AA vessels requires a flow-induced genetic pathway in which the mechano-sensitive zinc finger transcription factor klf2a induces expression of an endothelial-specific microRNA, mir-126, to activate Vegf signalling. Taken together, our work describes a novel genetic mechanism in which a microRNA facilitates integration of a physiological stimulus with growth factor signalling in endothelial cells to guide angiogenesis.


Subject(s)
Aorta, Thoracic/embryology , Hemodynamics , MicroRNAs/metabolism , Neovascularization, Physiologic , Signal Transduction , Vascular Endothelial Growth Factor A/metabolism , Zebrafish/genetics , Animals , Endothelial Cells/metabolism , Gene Expression Regulation, Developmental , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Kruppel-Like Transcription Factors/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , MicroRNAs/genetics , NIH 3T3 Cells , Regional Blood Flow/physiology , Zebrafish/blood , Zebrafish/embryology , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
19.
J Biol Chem ; 285(3): 2203-10, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-19920135

ABSTRACT

Ca2+ sparks are short lived and localized Ca2+ transients resulting from the opening of ryanodine receptors in sarcoplasmic reticulum. These events relax certain types of smooth muscle by activating big conductance Ca2+-activated K+ channels to produce spontaneous transient outward currents (STOCs) and the resultant closure of voltage-dependent Ca2+ channels. But in many smooth muscles from a variety of organs, Ca2+ sparks can additionally activate Ca2+-activated Cl(-) channels to generate spontaneous transient inward current (STICs). To date, the physiological roles of Ca2+ sparks in this latter group of smooth muscle remain elusive. Here, we show that in airway smooth muscle, Ca2+ sparks under physiological conditions, activating STOCs and STICs, induce biphasic membrane potential transients (BiMPTs), leading to membrane potential oscillations. Paradoxically, BiMPTs stabilize the membrane potential by clamping it within a negative range and prevent the generation of action potentials. Moreover, blocking either Ca2+ sparks or hyperpolarization components of BiMPTs activates voltage-dependent Ca2+ channels, resulting in an increase in global [Ca2+](i) and cell contraction. Therefore, Ca2+ sparks in smooth muscle presenting both STICs and STOCs act as a stabilizer of membrane potential, and altering the balance can profoundly alter the status of excitability and contractility. These results reveal a novel mechanism underlying the control of excitability and contractility in smooth muscle.


Subject(s)
Calcium/metabolism , Excitation Contraction Coupling , Lung , Muscle, Smooth/physiology , Action Potentials/drug effects , Animals , Calcium Channels/metabolism , Cell Membrane/drug effects , Cell Membrane/metabolism , Electric Conductivity , Evoked Potentials/drug effects , Excitation Contraction Coupling/drug effects , Indicators and Reagents/pharmacology , Intracellular Space/drug effects , Intracellular Space/metabolism , Large-Conductance Calcium-Activated Potassium Channels/metabolism , Male , Mice , Muscle Contraction/drug effects , Muscle, Smooth/cytology , Muscle, Smooth/metabolism
20.
J Neurosci ; 29(45): 14120-6, 2009 Nov 11.
Article in English | MEDLINE | ID: mdl-19906960

ABSTRACT

Recently, highly localized Ca(2+) release events, similar to Ca(2+) sparks in muscle, have been observed in neuronal preparations. Specifically, in murine neurohypophysial terminals (NHT), these events, termed Ca(2+) syntillas, emanate from a ryanodine-sensitive intracellular Ca(2+) pool and increase in frequency with depolarization in the absence of Ca(2+) influx. Despite such knowledge of the nature of these Ca(2+) release events, their physiological role in this system has yet to be defined. Such localized Ca(2+) release events, if they occur in the precise location of the final exocytotic event(s), may directly trigger exocytosis. However, directly addressing this hypothesis has not been possible, since no method capable of visualizing individual release events in these CNS terminals has been available. Here, we have adapted an amperometric method for studying vesicle fusion to this system which relies on loading the secretory granules with the false transmitter dopamine, thus allowing, for the first time, the recording of individual exocytotic events from peptidergic NHT. Simultaneous use of this technique along with high-speed Ca(2+) imaging has enabled us to establish that spontaneous neuropeptide release and Ca(2+) syntillas do not display any observable temporal or spatial correlation, confirming similar findings in chromaffin cells. Although these results indicate that syntillas do not play a direct role in eliciting spontaneous release, they do not rule out indirect modulatory effects of syntillas on secretion.


Subject(s)
Calcium/metabolism , Exocytosis/physiology , Neurons/physiology , Pituitary Gland, Posterior/physiology , Animals , Chromaffin Cells/physiology , Dopamine/metabolism , Electric Capacitance , In Vitro Techniques , Membrane Potentials/physiology , Mice , Patch-Clamp Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...