Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(20): e2219755120, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37155846

ABSTRACT

Latent Epstein-Barr virus (EBV) infection promotes undifferentiated nasopharyngeal carcinomas (NPCs) in humans, but the mechanism(s) for this effect has been difficult to study because EBV cannot transform normal epithelial cells in vitro and the EBV genome is often lost when NPC cells are grown in culture. Here we show that the latent EBV protein, LMP1 (Latent membrane protein 1), induces cellular proliferation and inhibits spontaneous differentiation of telomerase-immortalized normal oral keratinocytes (NOKs) in growth factor-deficient conditions by increasing the activity of the Hippo pathway effectors, YAP (Yes-associated protein) and TAZ (Transcriptional coactivator with PDZ-binding motif). We demonstrate that LMP1 enhances YAP and TAZ activity in NOKs both by decreasing Hippo pathway-mediated serine phosphorylation of YAP and TAZ and increasing Src kinase-mediated Y357 phosphorylation of YAP. Furthermore, knockdown of YAP and TAZ is sufficient to reduce proliferation and promote differentiation in EBV-infected NOKs. We find that YAP and TAZ are also required for LMP1-induced epithelial-to-mesenchymal transition. Importantly, we demonstrate that ibrutinib (an FDA-approved BTK inhibitor that blocks YAP and TAZ activity through an off-target effect) restores spontaneous differentiation and inhibits proliferation of EBV-infected NOKs at clinically relevant doses. These results suggest that LMP1-induced YAP and TAZ activity contributes to the development of NPC.


Subject(s)
Epstein-Barr Virus Infections , Nasopharyngeal Neoplasms , Humans , Cell Differentiation , Cell Proliferation , Epithelial Cells/metabolism , Herpesvirus 4, Human/genetics , Nasopharyngeal Neoplasms/genetics , Viral Matrix Proteins/genetics , Viral Matrix Proteins/metabolism , YAP-Signaling Proteins
2.
PLoS Pathog ; 18(10): e1010868, 2022 10.
Article in English | MEDLINE | ID: mdl-36190982

ABSTRACT

Differentiated epithelial cells are an important source of infectious EBV virions in human saliva, and latent Epstein-Barr virus (EBV) infection is strongly associated with the epithelial cell tumor, nasopharyngeal carcinoma (NPC). However, it has been difficult to model how EBV contributes to NPC, since EBV has not been shown to enhance proliferation of epithelial cells in monolayer culture in vitro and is not stably maintained in epithelial cells without antibiotic selection. In addition, although there are two major types of EBV (type 1 (T1) and type 2 (T2)), it is currently unknown whether T1 and T2 EBV behave differently in epithelial cells. Here we inserted a G418 resistance gene into the T2 EBV strain, AG876, allowing us to compare the phenotypes of T1 Akata virus versus T2 AG876 virus in a telomerase-immortalized normal oral keratinocyte cell line (NOKs) using a variety of different methods, including RNA-seq analysis, proliferation assays, immunoblot analyses, and air-liquid interface culture. We show that both T1 Akata virus infection and T2 AG876 virus infection of NOKs induce cellular proliferation, and inhibit spontaneous differentiation, in comparison to the uninfected cells when cells are grown without supplemental growth factors in monolayer culture. T1 EBV and T2 EBV also have a similar ability to induce epithelial-to-mesenchymal (EMT) transition and activate canonical and non-canonical NF-κB signaling in infected NOKs. In contrast to our recent results in EBV-infected lymphoblastoid cells (in which T2 EBV infection is much more lytic than T1 EBV infection), we find that NOKs infected with T1 and T2 EBV respond similarly to lytic inducing agents such as TPA treatment or differentiation. These results suggest that T1 and T2 EBV have similar phenotypes in infected epithelial cells, with both EBV types enhancing cellular proliferation and inhibiting differentiation when growth factors are limiting.


Subject(s)
Epstein-Barr Virus Infections , Nasopharyngeal Neoplasms , Telomerase , Anti-Bacterial Agents/metabolism , Cell Proliferation , Herpesvirus 4, Human/metabolism , Humans , Keratinocytes , NF-kappa B/metabolism , Nasopharyngeal Carcinoma/metabolism , Telomerase/genetics , Virus Activation
3.
J Med Chem ; 62(8): 3971-3988, 2019 04 25.
Article in English | MEDLINE | ID: mdl-30929420

ABSTRACT

Overexpression of myeloid cell leukemia-1 (Mcl-1) in cancers correlates with high tumor grade and poor survival. Additionally, Mcl-1 drives intrinsic and acquired resistance to many cancer therapeutics, including B cell lymphoma 2 family inhibitors, proteasome inhibitors, and antitubulins. Therefore, Mcl-1 inhibition could serve as a strategy to target cancers that require Mcl-1 to evade apoptosis. Herein, we describe the use of structure-based design to discover a novel compound (42) that robustly and specifically inhibits Mcl-1 in cell culture and animal xenograft models. Compound 42 binds to Mcl-1 with picomolar affinity and inhibited growth of Mcl-1-dependent tumor cell lines in the nanomolar range. Compound 42 also inhibited the growth of hematological and triple negative breast cancer xenografts at well-tolerated doses. These findings highlight the use of structure-based design to identify small molecule Mcl-1 inhibitors and support the use of 42 as a potential treatment strategy to block Mcl-1 activity and induce apoptosis in Mcl-1-dependent cancers.


Subject(s)
Antineoplastic Agents/chemistry , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Small Molecule Libraries/chemistry , Animals , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Azepines/chemistry , Binding Sites , Cell Line, Tumor , Cell Survival/drug effects , Crystallography, X-Ray , Drug Evaluation, Preclinical , Female , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Molecular Dynamics Simulation , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Neoplasms/drug therapy , Neoplasms/pathology , Protein Structure, Tertiary , Small Molecule Libraries/metabolism , Small Molecule Libraries/pharmacology , Small Molecule Libraries/therapeutic use , Structure-Activity Relationship , Xenograft Model Antitumor Assays
4.
J Med Chem ; 61(6): 2410-2421, 2018 03 22.
Article in English | MEDLINE | ID: mdl-29323899

ABSTRACT

Myeloid cell leukemia 1 (Mcl-1), an antiapoptotic member of the Bcl-2 family of proteins, has emerged as an attractive target for cancer therapy. Mcl-1 upregulation is often found in many human cancers and is associated with high tumor grade, poor survival, and resistance to chemotherapy. Here, we describe a series of potent and selective tricyclic indole diazepinone Mcl-1 inhibitors that were discovered and further optimized using structure-based design. These compounds exhibit picomolar binding affinity and mechanism-based cellular efficacy, including growth inhibition and caspase induction in Mcl-1-sensitive cells. Thus, they represent useful compounds to study the implication of Mcl-1 inhibition in cancer and serve as potentially useful starting points toward the discovery of anti-Mcl-1 therapeutics.


Subject(s)
Azepines/chemical synthesis , Azepines/pharmacology , Indoles/chemical synthesis , Indoles/pharmacology , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Apoptosis , Caspases/metabolism , Cell Division/drug effects , Cell Line, Tumor , Crystallography, X-Ray , Drug Design , Enzyme Activators/chemical synthesis , Enzyme Activators/pharmacology , Humans , Models, Molecular , Molecular Structure , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...