Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
2.
Clin Biomech (Bristol, Avon) ; 99: 105764, 2022 10.
Article in English | MEDLINE | ID: mdl-36130418

ABSTRACT

BACKGROUND: Cage subsidence remains a major complication after spinal surgery. The goal of this study was to compare the subsidence performance of three modern porous cage designs. METHODS: Three porous cages were evaluated: a porous titanium cage, a porous polyetheretherketone cage and a truss titanium cage. Mechanical testing was performed for each cage per the American Society for Testing and Materials F2077 and F2267 standards to evaluate cage stiffness and block stiffness, and per a novel clinically relevant dynamic subsidence testing method simulating cyclic spine loading during 3-months postoperatively to evaluate the subsidence displacement. FINDINGS: The porous polyetheretherketone cage demonstrated the lowest cage stiffness (21.0 ± 1.1 kN/mm), less than half of both titanium cages (truss titanium cage, 49.1 kN/mm; porous titanium cage, 43.6 kN/mm). The block stiffness was greatest for the porous titanium cage (2867.7 ± 105.3 N/mm), followed by the porous polyetheretherketone (2563.4 ± 72.9 N/mm) and truss titanium cages (2213.7 ± 21.8 N/mm). The dynamic subsidence displacement was greatest for the truss titanium cage, which was 1.5 and 2.5 times the subsidence displacement as the porous polyetheretherketone and porous titanium cages respectively. INTERPRETATIONS: Specific porous cage design plays a crucial role in the cage subsidence performance, to a greater degree than the selection of cage materials. A porous titanium cage with body lattice and microporous endplates significantly outperformed a truss titanium cage with a similar cage stiffness in subsidence performance, and a porous polyetheretherketone cage with half of its stiffness.


Subject(s)
Spinal Fusion , Benzophenones , Biomechanical Phenomena , Humans , Ketones , Lumbar Vertebrae/surgery , Polyethylene Glycols , Polymers , Porosity , Spinal Fusion/methods , Titanium
3.
Orthop Surg ; 14(9): 2339-2349, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35946442

ABSTRACT

OBJECTIVE: To investigate the biomechanics of transforaminal lumbar interbody fusion (TLIF) with interspinous process device (IPD) or pedicle screw fixation under both static and vibration conditions by the finite element (FE) method. METHOD: A validated FE model of the L1-5 lumbar spine was used in this study. This FE model derived from computed tomography images of a healthy female adult volunteer of appropriate age. Then the model was modified to simulate L3-4 TLIF. Four conditions were compared: (i) intact; (ii) TLIF combined with bilateral pedicle screw fixation (BPSF); (iii) TLIF combined with U-shaped IPD Coflex-F (CF); and (iv) TLIF combined with unilateral pedicle screw fixation (UPSF). The intact and surgical FE models were analyzed under static and vibration loading conditions respectively. For static loading conditions, four motion modes (flexion, extension, lateral bending, and axial rotation) were simulated. For vibration loading conditions, the dynamic responses of lumbar spine under sinusoidal vertical load were simulated. RESULT: Under static loading conditions, compared with intact case, BPSF decreased range of motion (ROM) by 92%, 95%, 89% and 92% in flexion, extension, lateral bending and axial rotation, respectively. While CF decreased ROM by 87%, 90%, 69% and 80%, and UPSF decreased ROM by 84%, 89%, 66% and 82%, respectively. Compared with CF, UPSF increased the endplate stress by 5%-8% in flexion, 7%-10% in extension, 2%-4% in lateral bending, and decreased the endplate stress by 16%-19% in axial rotation. Compared with CF, UPSF increased the cage stress by 9% in flexion, 10% in extension, and decreased the cage stress by 3% in lateral bending, and 13% in axial rotation. BPSF decreased the stress responses of endplates and cage compared with CF and UPSF. Compared BPSF, CF decreased the facet joint force (FJF) by 6%-13%, and UPSF decreased the FJF by 4%-12%. During vibration loading conditions, compared with BPSF, CF reduced maximum values of the FJF by 16%-32%, and vibration amplitudes by 22%-35%, while UPSF reduced maximum values by 20%-40%, and vibration amplitudes by 31%-45%. CONCLUSION: Compared with other surgical models, BPSF increased the stability of lumbar spine, and also showed advantages in cage stress and endplate stress. CF showed advantages in IDP and FJF especially during vertical vibration, which may lead to lower risk of adjacent segment degeneration. CF may be an effective alternative to pedicle screw fixation in TLIF procedures.


Subject(s)
Pedicle Screws , Spinal Fusion , Adult , Female , Humans , Biomechanical Phenomena/physiology , Finite Element Analysis , Lumbar Vertebrae/physiology , Lumbar Vertebrae/surgery , Range of Motion, Articular , Spinal Fusion/methods , Vibration
4.
World Neurosurg ; 162: e626-e634, 2022 06.
Article in English | MEDLINE | ID: mdl-35346883

ABSTRACT

OBJECTIVE: The objective of the study was to quantify the effect of cage material (titanium-alloy vs. polyetheretherketone or PEEK) and design (porous vs. solid) on subsidence and osseointegration. METHODS: Three lateral cages (solid PEEK, solid titanium, and 3-dimension-printed porous titanium cages) were evaluated for cage stiffness, subsidence compression stiffness, and dynamic subsidence displacement under simulated postoperative spine loading. Dowel-shaped implants made of grit-blasted solid titanium alloy (solid titanium) and porous titanium were fabricated using commercially available processes. Samples were processed for mechanical push-out testing and polymethylmethacrylate histology following an established ovine bone implantation model. RESULTS: The solid titanium cage exhibited the greatest stiffness (57.1 ± 0.6 kN/mm), followed by the porous titanium cage (40.4 ± 0.3 kN/mm) and the solid PEEK cage (37.1 ± 1.2 kN/mm). In the clinically relevant dynamic subsidence, the porous titanium cage showed the least amount of subsidence displacement (0.195 ± 0.012 mm), significantly less than that of the solid PEEK cage (0.328 ± 0.020 mm) and the solid titanium cage (0.538 ± 0.027 mm). Bony on-growth was noted histologically on all implant materials; however, only the porous titanium supported bony ingrowth with marked quantities of bone formed within the interconnected pores through 12 weeks. Functional differences in osseointegration were noted between groups during push-out testing. The porous titanium showed the highest maximum shear stress at 12 weeks and was the only group that demonstrated significant improvement (4-12 weeks). CONCLUSIONS: The choice of material and design is critical to cage mechanical and biological performances. A porous titanium cage can reduce subsidence risk and generate biological stability through bone on-growth and ingrowth.


Subject(s)
Osseointegration , Spinal Fusion , Alloys , Animals , Humans , Ketones , Lumbar Vertebrae/surgery , Polyethylene Glycols , Sheep , Titanium
5.
Spine J ; 22(6): 1028-1037, 2022 06.
Article in English | MEDLINE | ID: mdl-35017054

ABSTRACT

BACKGROUND CONTEXT: Cage subsidence remains a serious complication after spinal fusion surgery. Novel porous designs in the cage body or endplate offer attractive options to improve subsidence and osseointegration performance. PURPOSE: To elucidate the relative contribution of a porous design in each of the two major domains (body and endplates) to cage stiffness and subsidence performance, using standardized mechanical testing methods, and to analyze the fusion progression via an established ovine interbody fusion model to support the mechanical testing findings. STUDY DESIGN/SETTING: A comparative preclinical study using standardized mechanical testing and established animal model. METHODS: To isolate the subsidence performance contributed by each porous cage design feature, namely the stress-optimized body lattice (vs. a solid body) and microporous endplates (vs. smooth endplates), four groups of cages (two-by-two combination of these two features) were tested in: (1) static axial compression of the cage (per ASTM F2077) and (2) static subsidence (per ASTM F2267). To evaluate the progression of fusion, titanium cages were created with a microporous endplate and internal lattice architecture analogous to commercial implants used in subsidence testing and implanted in an endplate-sparing, ovine intervertebral body fusion model. RESULTS: The cage stiffness was reduced by 16.7% by the porous body lattice, and by 16.6% by the microporous endplates. The porous titanium cage with both porous features showed the lowest stiffness with a value of 40.4±0.3 kN/mm (Mean±SEM) and a block stiffness of 1976.8±27.4 N/mm for subsidence. The body lattice showed no significant impact on the block stiffness (1.4% reduction), while the microporous endplates decreased the block stiffness significantly by 24.9% (p<.0001). All segments implanted with porous titanium cages were deemed rigidly fused by manual palpation, except one at 12 weeks, consistent with robotic ROM testing and radiographic and histologic observations. A reduction in ROM was noted from 12 to 26 weeks (4.1±1.6° to 2.2±1.4° in lateral bending, p<.05; 2.1±0.6° to 1.5±0.3° in axial rotation, p<.05); and 3.3±1.6° to 1.9±1.2° in flexion extension, p=.07). Bone in the available void improved with time in the central aperture (54±35% to 83±13%, p<.05) and porous cage structure (19±26% to 37±21%, p=.15). CONCLUSIONS: Body lattice and microporous endplates features can effectively reduce the cage stiffness, therefore reducing the risk of stress shielding and promoting early fusion. While body lattice showed no impact on block stiffness and the microporous endplates reduced the block stiffness, a titanium cage with microporous endplates and internal lattice supported bone ingrowth and segmental mechanical stability as early as 12 weeks in ovine interbody fusion. CLINICAL SIGNIFICANCE: Porous titanium cage architecture can offer an attractive solution to increase the available space for bone ingrowth and bridging to support successful spinal fusion while mitigating risks of increased subsidence.


Subject(s)
Lumbar Vertebrae , Spinal Fusion , Animals , Biomechanical Phenomena , Humans , Lumbar Vertebrae/surgery , Porosity , Printing, Three-Dimensional , Sheep , Titanium
6.
Int J Numer Method Biomed Eng ; 37(8): e3498, 2021 08.
Article in English | MEDLINE | ID: mdl-33998776

ABSTRACT

Lumbar spinal fusion may cause adjacent segment degeneration (ASD) in the long term. Recently, inserting an interspinous process device (IPD) proximal to the fusion has been proposed to prevent ASD. The aim of this study was to investigate the biomechanics of lumbar fusion with proximal IPD implantation (LFPI) under both static loads and whole body vibration (WBV). A previously validated finite element (FE) model of the L1-5 lumbar spine was modified to simulate L4-5 fusion. Three different IPDs (Coflex-F, Wallis and DIAM) were inserted at the L3-4 segment of the fusion model to construct the LFPI models. The intact and surgical FE models were analyzed under static loads and WBV, respectively. Under static loading conditions, LFPI decreased range of motion (ROM) and intradiscal pressure (IDP) at the transition segment L3-4 compared with the fusion case. At the segment (L2-3) adjacent to the transition level, LFPI induced higher motion and IDP than rigid fusion. Under WBV, vibration amplitudes of the L3-4 IDP and L4-5 facet joint force (FJF) decreased by more than 54.3% after surgery. The LFPI model with the DIAM system offered the most comparable biomechanics to the intact model under static loads, and decreased the dynamic responses of the L4-5 FJF under WBV. The LFPI model with the Wallis and Coflex-F systems could stabilize the transition segment, and decrease dynamic responses of the L3-4 IDP. The DIAM system may be more suitable in LFPI.


Subject(s)
Spinal Fusion , Zygapophyseal Joint , Biomechanical Phenomena , Finite Element Analysis , Lumbar Vertebrae/surgery , Range of Motion, Articular
7.
Global Spine J ; 9(2): 162-168, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30984495

ABSTRACT

STUDY DESIGN: Cadaveric biomechanical study. OBJECTIVES: Medial-to-lateral trajectory cortical screws are of clinical interest due to the ability to place them through a less disruptive, medialized exposure compared with conventional pedicle screws. In this study, cortical and pedicle screw trajectory stability was investigated in single-level transforaminal lumbar interbody fusion (TLIF), posterior lumbar interbody fusion (PLIF), and extreme lateral interbody fusion (XLIF) constructs. METHODS: Eight lumbar spinal units were used for each interbody/screw trajectory combination. The following constructs were tested: TLIF + unilateral facetectomy (UF) + bilateral pedicle screws (BPS), TLIF + UF + bilateral cortical screws (BCS), PLIF + medial facetectomy (MF) + BPS, PLIF + bilateral facetectomy (BF) + BPS, PLIF + MF + BCS, PLIF + BF + BCS, XLIF + BPS, XLIF + BCS, and XLIF + bilateral laminotomy + BCS. Range of motion (ROM) in flexion-extension, lateral bending, and axial rotation was assessed using pure moments. RESULTS: All instrumented constructs were significantly more rigid than intact (P < .05) in all test directions except TLIF + UF + BCS, PLIF + MF + BCS, and PLIF + BF + BCS in axial rotation. In general, XLIF and PLIF + MF constructs were more rigid (lowest ROM) than TLIF + UF and PLIF + BF constructs. In the presence of substantial iatrogenic destabilization (TLIF + UF and PLIF + BF), cortical screw constructs tended to be less rigid (higher ROM) than the same pedicle screw constructs in lateral bending and axial rotation; however, no statistically significant differences were found when comparing pedicle and cortical fixation for the same interbody procedures. CONCLUSIONS: Both cortical and pedicle trajectory screw fixation provided stability to the 1-level interbody constructs. Constructs with the least iatrogenic destabilization were most rigid. The more destabilized constructs showed less lateral bending and axial rotation rigidity with cortical screws compared with pedicle screws. Further investigation is warranted to understand the clinical implications of differences between constructs.

8.
World Neurosurg ; 127: e1112-e1119, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30980982

ABSTRACT

BACKGROUND: Recently, interspinous stabilization with the interspinous process device (IPD) has become an alternative to treat lumbar spinal stenosis. The biomechanical influence of different design features of IPDs on intradiscal pressure (IDP) and facet joint force (FJF) has not been fully understood. The aim of this study was to investigate the biomechanical performance of different IPDs using finite element (FE) method. METHODS: A FE model of the L1-5 segments was developed and validated. Four surgical FE models were constructed by inserting different implants at the L3-4 segment (Coflex-F, DIAM, Wallis, and pedicle screw system). The 4 motion modes were simulated. RESULTS: The IPDs decreased range of motion (ROM) at the surgical level substantially in flexion and extension, but little influence was found in lateral bending and torsion. Compared with the DIAM and Wallis devices, the Coflex-F device showed advantages in stabilizing the surgical level, especially in flexion and extension, while it increased FJF at adjacent levels by 26%-27% in extension. Among the 3 IPDs, the DIAM device exhibited the most comparable ROM, IDP, and FJF at adjacent levels compared with the intact lumbar spine. The influence of the Wallis device was between that of the Coflex-F and DIAM devices. CONCLUSIONS: Compared with rigid fixation, the IPDs demonstrated less compensation at adjacent levels in terms of ROM, IDP, and FJF, which may lower the incidence of adjacent segment degeneration in the long term.


Subject(s)
Finite Element Analysis , Imaging, Three-Dimensional/methods , Lumbar Vertebrae/anatomy & histology , Lumbar Vertebrae/physiology , Models, Anatomic , Spinal Fusion/instrumentation , Adult , Biomechanical Phenomena/physiology , Female , Humans , Lumbar Vertebrae/surgery , Pedicle Screws , Spinal Fusion/methods
9.
Biomed Mater Eng ; 29(4): 485-497, 2018.
Article in English | MEDLINE | ID: mdl-30282345

ABSTRACT

BACKGROUND: Lumbar spinal fusion in the interbody space is augmented with interbody fusion cages to provide structural support while arthrodesis occurs. Subsidence is a serious complication of interbody fusion. However, the biomechanical influence of anterior longitudinal ligament (ALL) and pedicle screws on subsidence has not been fully understood. OBJECTIVE: To investigate biomechanical effects of the hyperlordotic cages in different surgical conditions using finite element analysis. METHODS: Four surgical finite element (FE) models were constructed by inserting 15 degree lordosis cage at the L3-L4 disc space. The four surgical conditions were ALL intact (M1), ALL resected (M2), ALL intact and bilateral pedicle screws (M3), and ALL resected and bilateral pedicle screws (M4). Follow loads were applied at the L2 vertebral body while the inferior surface of L5 was fixed. FEA was implemented to simulate the four motion modes and biomechanical properties of four fusion scenarios with hyperlordotic interbody cage were compared. RESULTS: The range of motion (ROM) and facet joint force (FJF) at L3-L4 decreased significantly after fusion during all the motion modes. The cage stress and endplate stress at L3-L4 increased significantly after fusion during all the motion modes. The cage stress and endplate stress at L3-L4 for M3 and M4 were smaller than that for M1 and M2 during all the motion modes. The FJF at L3-L4 for M3 and M4 were smaller than that for M1 and M2 during extension, bending, and rotation. CONCLUSIONS: ALL has little effect on the biomechanics after lumbar fusion with hyperlordotic interbody cage. The bilateral pedicle screws significantly decreased the stress in cage, stress in endplate at L3-L4, and lowered facet contact force except for flexion mode. The implication is that the supplemental bilateral pedicle screws are recommended whether or not the ALL is resected.


Subject(s)
Finite Element Analysis , Pedicle Screws , Spinal Cord/surgery , Spinal Fusion/methods , Adult , Biomechanical Phenomena , Female , Humans , Lordosis/therapy , Lumbar Vertebrae/surgery , Models, Anatomic
10.
J Spine Surg ; 4(2): 247-253, 2018 Jun.
Article in English | MEDLINE | ID: mdl-30069514

ABSTRACT

BACKGROUND: The retroperitoneal trans-psoas extreme lateral interbody fusion (XLIF) technique has improved over the last decade with increased efficiency and an emphasis on complication avoidance. After all known procedural safeguards are enacted, the most common failure of neuro-monitoring precision may be the use of non-depolarizing muscle relaxants (MR) for induction that is standard of care for anesthesia. Even when non-depolarizing MRs are minimized there is often a small dose given to decrease risk of vocal cord injury with intubation. The most common neurological adverse events (AE) attendant to the lateral approach are thigh dysesthetic pain and hip flexor weakness. The purpose of this study is to present a consecutive series of L3-4 and L4-5 XLIF patients treated by a single surgeon using all procedural safeguards with and without the use of a low dose of non-depolarizing MRs prior to intubation. METHODS: A retrospective review of 74 consecutive patients treated at 150 levels with XLIF and no muscle relaxants (NMR) were compared to a group of 124 consecutive XLIF patients treated at 238 levels with MR. The surgeon upon discovering a small dose of rocuronium was used for intubation, questioned the effect on the neuromonitoring and NMR group was begun. All procedural technique details remained the same. All patients had XLIF at L3-4, L4-5, or both levels. Perioperative variables were collected, including evoked and free-run EMG readings and postoperative neural and muscular side effects. Hospital records including progress notes describing postoperative symptoms and anesthesia records describing the drugs, dosages, and timing were studied. Clinical records were reviewed at 1, 3 and 6 months for complaints of neurologic AE. RESULTS: NMR patients had a perfect twitch test (>99%) immediately. MR patients had slower arrival of the twitch and often settled at a lower level (80-92%). No surgery was attempted until the twitch test was at least 80%. NMR had 8/74 (10.8%) and MR 36/125 (28.8%) thigh AE (thigh dysthetic pain) at 1 month (P<0.005). No lower extremity weaknesses (femoral nerve injury) were observed in the NMR group and three in the MR group. All NMR thigh AEs resolved by the third month postoperative visit compared with 17/125 at 3 months (P=0.001) and 6/125 at 6 months (P=0.176) with persistent thigh AEs in the MR group. CONCLUSIONS: Eliminating MRs altogether appears to have allowed the evoked and free running EMG to be more reliable and accurate in predicting the proximity of the neurologic structures. Thigh AEs related to neural and muscular integrity in NMR patients were limited and eliminated by the 3rd month. The MR group was significantly more likely to have a thigh AE at 1 month and persistent at 3 months. Neurologic AEs may be limited or eliminated when MRs are avoided in lateral lumbar fusion surgery.

11.
World Neurosurg ; 114: e1120-e1129, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29609081

ABSTRACT

BACKGROUND: Lateral lumbar interbody fusion using cage supplemented with fixation has been used widely in the treatment of lumbar disease. A combined fixation (CF) of lateral plate and spinous process plate may provide multiplanar stability similar to that of bilateral pedicle screws (BPS) and may reduce morbidity. The biomechanical influence of the CF on cage subsidence and facet joint stress has not been well described. The aim of this study was to compare biomechanics of various fixation options and to verify biomechanical effects of the CF. METHODS: The surgical finite element models with various fixation options were constructed based on computed tomography images. The lateral plate and posterior spinous process plate were applied (CF). The 6 motion modes were simulated. Range of motion (ROM), cage stress, endplate stress, and facet joint stress were compared. RESULTS: For the CF model, ROM, cage stress, and endplate stress were the minimum in almost all motion modes. Compared with BPS, the CF reduced ROM, cage stress, and endplate stress in all motion modes. The ROM was reduced by more than 10% in all motion modes except for flexion; cage stress and endplate stress were reduced more than 10% in all motion modes except for rotation-left. After interbody fusion, facet joint stress was reduced substantially compared with the intact conditions in all motion modes except for flexion. CONCLUSIONS: The combined plate fixation may offer an alternative to BPS fixation in lateral lumbar interbody fusion.


Subject(s)
Finite Element Analysis/standards , Internal Fixators/standards , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/surgery , Spinal Fusion/instrumentation , Spinal Fusion/standards , Adult , Biomechanical Phenomena/physiology , Bone Plates/standards , Female , Humans , Imaging, Three-Dimensional/methods , Lumbar Vertebrae/physiology , Pedicle Screws/standards , Range of Motion, Articular/physiology , Spinal Fusion/methods
12.
Comput Methods Biomech Biomed Engin ; 21(3): 247-254, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29513028

ABSTRACT

Inappropriate lordotic angle of lumbar fusion cage could be associated with cage damage or subsidence. The biomechanical influence of cage lordotic angle on lumbar spine has not been fully investigated. Four surgical finite element models were constructed by inserting cages with various lordotic angles at L3-L4 disc space. The four motion modes were simulated. The range of motion (ROM) decreased with increased lordotic angle of cage in flexion, extension, and rotation, whereas it was not substantially changed in bending. The maximum stress in cage decreased with increased lordotic angle of cage in all motion modes. The maximum stress in endplate at surgical level increased with increased lordotic angle of cage in flexion and rotation, whereas it was not substantially changed in extension and bending. The facet joint force (FJF) was much smaller than that for the intact conditions in extension, bending, and rotation, while it was not substantially changed in flexion. In conclusion, the ROM, stresses in the cage and endplate at surgical level are sensitive to the lordotic angle of cage. The increased cage lordotic angle may provide better stability and reduce the risk of cage damage, whereas it may increase the risk of subsidence in flexion and rotation.


Subject(s)
Finite Element Analysis , Lordosis/physiopathology , Lordosis/surgery , Lumbar Vertebrae/physiopathology , Lumbar Vertebrae/surgery , Spinal Fusion , Adult , Biomechanical Phenomena , Female , Humans , Intervertebral Disc/pathology , Intervertebral Disc/physiopathology , Models, Anatomic , Pressure , Range of Motion, Articular , Reproducibility of Results , Rotation , Stress, Mechanical
13.
Comput Biol Med ; 95: 167-174, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29501735

ABSTRACT

In lumbar interbody fusion, a porous additive manufactured (AM) cage can provide more desirable stiffness, and may be beneficial to bone ingrowth. The biomechanical influence of porous cages on stability, subsidence, and facet contact force has not been fully described. The aim of this study was to verify biomechanical effects of porous cages. A surgical finite element (FE) model of transforaminal lumbar interbody fusion (TLIF) was constructed. Partially porous (PP) cages and fully porous (FP) cages were applied. Mechanical tests were performed to obtain the mechanical parameters of porous materials. The porous cages were compared to solid titanium (TI) cage and solid PEEK cage. Four motion modes were simulated. Range of motion (ROM), cage stress, endplate stress, and facet joint force (FJF) were compared. After interbody fusion, ROM decreased by more than 90% in flexion, bending and rotation. Compared with TI and PP cages, PEEK and FP cages substantially reduced the maximum stresses in cage and endplate in all motion modes. Compared with PEEK cages, the stresses in cage and endplate for FP cages decreased, whereas the ROM increased. Compared among three FP cages, the stresses in cage and endplate decreased with increasing porosity, whereas ROM increased with increasing porosity. FJF for various cages was substantially reduced compared to the intact model in all motion modes except for flexion. In summary, fully porous cages with a porosity of between 65% and 80% may offer an alternative to solid PEEK cages in TLIF.


Subject(s)
Finite Element Analysis , Lumbar Vertebrae , Models, Biological , Spinal Fusion , Adult , Female , Humans , Porosity
14.
World Neurosurg ; 111: e581-e591, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29288855

ABSTRACT

BACKGROUND: A porous additive manufactured (AM) cage may provide stability similar to that of traditional solid cages and may be beneficial to bone ingrowth. The biomechanical influence of various porous cages on stability, subsidence, stresses in cage, and facet contact force has not been fully described. The purpose of this study was to verify biomechanical effects of porous AM cages. METHODS: The surgical finite element models with various cages were constructed. The partially porous titanium (PPT) cages and fully porous titanium (FPT) cages were applied. The mechanical parameters of porous materials were obtained by mechanical test. Then the porous AM cages were compared with solid titanium (TI) cage and solid polyetheretherketone (PEEK) cage. The 4 motion modes were simulated. Range of motion (ROM), cage stress, end plate stress, and facet joint force (FJF) were compared. RESULTS: For all the surgical models, ROM decreased by >90%. Compared with TI and PPT cages, PEEK and FPT cages substantially reduced the maximum stresses in cage and end plate in all motion modes. Compared with PEEK cages, the stresses in cage and end plate for FPT cages decreased, whereas the ROM increased. Comparing FPT cages, the stresses in cage and end plate decreased with increasing porosity, whereas ROM increased with increasing porosity. After interbody fusion, FJF was substantially reduced in all motion modes except for flexion. CONCLUSIONS: Fully porous cages may offer an alternative to solid PEEK cages in lateral lumbar interbody fusion. However, it may be prudent to further increase the porosity of the cage.


Subject(s)
Biomechanical Phenomena , Internal Fixators , Lumbar Vertebrae/surgery , Spinal Fusion/instrumentation , Adult , Benzophenones , Biocompatible Materials , Female , Finite Element Analysis , Humans , Ketones/chemistry , Models, Anatomic , Polyethylene Glycols/chemistry , Polymers , Porosity , Range of Motion, Articular , Stress, Mechanical , Titanium , Zygapophyseal Joint/physiopathology
15.
Spine (Phila Pa 1976) ; 43(6): 379-387, 2018 03 15.
Article in English | MEDLINE | ID: mdl-28678112

ABSTRACT

STUDY DESIGN: Biomechanical analysis using a validated nonlinear finite element (FE) model. OBJECTIVE: The aim of this study was to combine the strategy of two-level hybrid surgery (HS) to explore how prostheses affect cervical biomechanics. SUMMARY OF BACKGROUND DATA: Few FE studies have explored differences in biomechanical behavior between combined and stand-alone structured prostheses with HS. No FE studies have considered whether the prosthesis type and hybrid strategy influence two-level HS. METHODS: Three prostheses-Prodisc-C, PCM, and DCI-were analyzed in flexion and extension during HS at C4-C6. There were two HS constructs: anterior cervical discectomy and fusion (ACDF) conducted at the C4-C5 levels and anterior cervical disc replacement (ACDR) conducted at C5-C6 levels (ACDF/ACDR); ACDR/ACDF. RESULTS: Flexion motion at adjacent levels was greater than that of intact spine. A maximum increase of 80% was observed with PCM in the ACDF/ACDR group. Extension motion at adjacent levels for both hybrid strategies with PCM, however, was similar to that of intact spine (<10% change), whereas it increased by 14% to 32% with DCI. The strain energy-storing capability with DCI tended to be similar to that of normal discs. Facet stress at the infra-adjacent level, however, significantly increased with DCI in both groups, whereas it increased with PCM and Prodisc-C only in the ACDR/ACDF group. All prostheses produced overloads on cartilage at the arthroplasty level. Prodisc-C and PCM cores showed stress above the yield stress of ultrahigh-molecular-weight polyethylene. CONCLUSION: Each prosthesis had advantages and disadvantages. In extension, DCI (vs. Prodisc-C and PCM) exhibited more compensation at adjacent levels in terms of motion, moments, and facet stress. The biomechanical performance of Prodisc-C was easily affected by the hybrid strategy. Thus, if only a combined-structure prosthesis is available for two-level HS (C4-C6 level), the hybrid strategy should be carefully evaluated and the ACDF/ACDR construct is recommended to avoid accelerating degeneration of adjacent segments. LEVEL OF EVIDENCE: 5.


Subject(s)
Biomechanical Phenomena/physiology , Cervical Vertebrae/surgery , Intervertebral Disc Degeneration/surgery , Prosthesis Implantation , Humans , Prostheses and Implants , Prosthesis Implantation/methods , Range of Motion, Articular/physiology , Spinal Fusion/methods
16.
Int J Comput Assist Radiol Surg ; 12(8): 1399-1409, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28597366

ABSTRACT

PURPOSE: Few finite element studies have investigated changes in cervical biomechanics with various prosthesis design parameters using hybrid surgery (HS), and none have investigated those combined different HS strategies. The aim of our study was to investigate the effect of ball-and-socket prosthesis geometry on the biomechanical performance of the cervical spine combined with two HS constructs. METHODS: Two HS strategies were conducted: (1) ACDF at C4-C5 and anterior cervical disc replacement (ACDR) at C5-C6 (ACDF/ACDR), and (2) ACDR/ACDF. Three different prostheses were used for each HS strategy: prosthesis with the core located at the center of the inferior endplate with a radius of 5 mm (BS-5) or 6 mm (BS-6), or with a 5 mm radius core located 1 mm posterior to the center of the inferior endplate (PBS-5). Flexion and extension motions were simulated under displacement control. RESULTS: The flexion motions in supra- and infra-adjacent levels increased in all cases. The corresponding extension motions increased with all prostheses in ACDR/ACDF group. The stiffness in flexion and extension increased with all HS models, except for the extension stiffness with ACDF/ACDR. The facet stresses between the index and infra-adjacent level in ACDR/ACDF were significantly greater than those in the intact model . The stresses on the BS-5 UHMWPE core were greater than the yield stress. CONCLUSION: The core radii and position did not significantly affect the moments, ROM, and facet stress in extension. However, the moments and ROM in flexion were easily affected by the position. The results implied that the large core radii and posterior core position in ACDR designs may reduce the risk of subsidence and wear in the long term as they showed relative low stress . The ACDF/ACDR surgery at C4-C6 level may be an optimal treatment for avoiding accelerating the degeneration of adjacent segments.


Subject(s)
Cervical Vertebrae/surgery , Intervertebral Disc Degeneration/surgery , Prostheses and Implants , Prosthesis Implantation , Biomechanical Phenomena , Finite Element Analysis , Humans , Models, Anatomic , Predictive Value of Tests , Prosthesis Design , Range of Motion, Articular , Spinal Fusion/methods
17.
Spine (Phila Pa 1976) ; 42(20): E1173-E1181, 2017 Oct 15.
Article in English | MEDLINE | ID: mdl-28198781

ABSTRACT

STUDY DESIGN: Biomechanical study using a three-dimensional nonlinear finite element model. OBJECTIVE: To analyze biomechanical changes with three prostheses based on two-level arthroplasty and to verify the biomechanical efficiency of dynamic cervical implants (DCIs) with a stand-alone U-shaped structure. SUMMARY OF BACKGROUND DATA: Few studies have compared biomechanical behavior of various prostheses as they relate with clinical results after two-level total disc replacement. METHODS: Three arthroplasty devices Mobi-C, porous coated motion (PCM), and DCI were inserted at the C4-C6 disc space and analyzed. Displacement loading was applied to the center of the endplate at the C3 level to simulate flexion and extension motions. RESULTS: The motion distributions in extension with DCI and in flexion with DCI and Mobi-C were relatively close to that in the intact model. Mobi-C and PCM obviously increased the combined extension range of motion at the index levels, but both resulted in about 45% decrease in extension moment. DCI showed a trend in strain energy similar to that of healthy discs. PCM exhibited a facet joint stress distribution almost similar to that of the intact model. DCI did not generate significant overloading at cartilage between the index levels, whereas the maximum facet joint stress increased with Mobi-C was about 39%. The maximum stress on a ultrahigh molecular-weight-polyethylene core was above the yield stress (42.43 MPa for Mobi-C and 30.94 MPa for PCM). CONCLUSION: Each prosthesis shows its biomechanical advantages and disadvantages. However, DCI has the capacity to preserve motion and store energy under external loading, similar to the behavior of normal discs. Compared with Mobi-C, both DCI and PCM showed a lower stress at cartilage between index levels, which may avoid facet joint degeneration to some extent. Such a well-controlled arthroplasty device with a stand-alone structure may be a potential candidate and needs to be investigated in future studies. LEVEL OF EVIDENCE: 5.


Subject(s)
Cervical Vertebrae/diagnostic imaging , Imaging, Three-Dimensional/methods , Intervertebral Disc/diagnostic imaging , Prosthesis Implantation/instrumentation , Total Disc Replacement/instrumentation , Adult , Arthroplasty/methods , Biomechanical Phenomena/physiology , Cervical Vertebrae/physiology , Cervical Vertebrae/surgery , Humans , Intervertebral Disc/physiology , Intervertebral Disc/surgery , Male , Prostheses and Implants , Prosthesis Implantation/methods , Range of Motion, Articular/physiology , Total Disc Replacement/methods , Zygapophyseal Joint/diagnostic imaging , Zygapophyseal Joint/physiology , Zygapophyseal Joint/surgery
18.
Med Sci Monit ; 21: 4006-14, 2015 Dec 23.
Article in English | MEDLINE | ID: mdl-26694835

ABSTRACT

BACKGROUND The ideal procedure for multilevel cervical degenerative disc diseases remains controversial. Recent studies on hybrid surgery combining anterior cervical discectomy and fusion (ACDF) and artificial cervical disc replacement (ACDR) for 2-level and 3-level constructs have been reported in the literature. The purpose of this study was to estimate the biomechanics of 3 kinds of 4-level hybrid constructs, which are more likely to be used clinically compared to 4-level arthrodesis. MATERIAL AND METHODS Eighteen human cadaveric spines (C2-T1) were evaluated in different testing conditions: intact, with 3 kinds of 4-level hybrid constructs (hybrid C3-4 ACDR+C4-6 ACDF+C6-7ACDR; hybrid C3-5ACDF+C5-6ACDR+C6-7ACDR; hybrid C3-4ACDR+C4-5ACDR+C5-7ACDF); and 4-level fusion. RESULTS Four-level fusion resulted in significant decrease in the C3-C7 ROM compared with the intact spine. The 3 different 4-level hybrid treatment groups caused only slight change at the instrumented levels compared to intact except for flexion. At the adjacent levels, 4-level fusion resulted in significant increase of contribution of both upper and lower adjacent levels. However, for the 3 hybrid constructs, significant changes of motion increase far lower than 4P at adjacent levels were only noted in partial loading conditions. No destabilizing effect or hypermobility were observed in any 4-level hybrid construct. CONCLUSIONS Four-level fusion significantly eliminated motion within the construct and increased motion at the adjacent segments. For all 3 different 4-level hybrid constructs, ACDR normalized motion of the index segment and adjacent segments with no significant hypermobility. Compared with the 4-level ACDF condition, the artificial discs in 4-level hybrid constructs had biomechanical advantages compared to fusion in normalizing adjacent level motion.


Subject(s)
Spinal Fusion/methods , Adolescent , Adult , Aged , Biomechanical Phenomena , Cervical Vertebrae , Humans , In Vitro Techniques , Middle Aged , Range of Motion, Articular
19.
Med Sci Monit ; 21: 3348-55, 2015 Nov 03.
Article in English | MEDLINE | ID: mdl-26529430

ABSTRACT

BACKGROUND: The ideal surgical approach for cervical disk disease remains controversial, especially for multilevel cervical disease. The purpose of this study was to investigate the biomechanics of the cervical spine after 3-level hybrid surgery compared with 3-level anterior cervical discectomy and fusion (ACDF). MATERIAL AND METHODS: Eighteen human cadaveric spines (C2-T1) were evaluated under displacement-input protocol. After intact testing, a simulated hybrid construct or fusion construct was created between C3 to C6 and tested in the following 3 conditions: 3-level disc plate disc (3DPD), 3-level plate disc plate (3PDP), and 3-level plate (3P). RESULTS: Compared to intact, almost 65~80% of motion was successfully restricted at C3-C6 fusion levels (p<0.05). 3DPD construct resulted in slight increase at the 3 instrumented levels (p>0.05). 3PDP construct resulted in significant decrease of ROM at C3-C6 levels less than 3P (p<0.05). Both 3DPD and 3PDP caused significant reduction of ROM at the arthrodesis level and produced motion increase at the arthroplasty level. For adjacent levels, 3P resulted in markedly increased contribution of both upper and lower adjacent levels (p<0.05). Significant motion increases lower than 3P were only noted at partly adjacent levels in some conditions for 3DPD and 3PDP (p<0.05). CONCLUSIONS: ACDF eliminated motion within the construct and greatly increased adjacent motion. Artificial cervical disc replacement normalized motion of its segment and adjacent segments. While hybrid conditions failed to restore normal motion within the construct, they significantly normalized motion in adjacent segments compared with the 3-level ACDF condition. The artificial disc in 3-level constructs has biomechanical advantages compared to fusion in normalizing motion.


Subject(s)
Cervical Vertebrae/surgery , Spinal Fusion/methods , Total Disc Replacement/methods , Aged , Biomechanical Phenomena , Bone Plates , Cadaver , Diskectomy/methods , Humans , Intervertebral Disc Degeneration/physiopathology , Intervertebral Disc Degeneration/surgery , Intervertebral Disc Displacement/physiopathology , Intervertebral Disc Displacement/surgery , Middle Aged , Range of Motion, Articular , Stress, Mechanical , Two-Hybrid System Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...