Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Hematol ; 97(1): 18-29, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34677878

ABSTRACT

Septins play key roles in mammalian cell division and cytokinesis but have not previously been implicated in a germline human disorder. A male infant with severe neutropenia and progressive dysmyelopoiesis with tetraploid myeloid precursors was identified. No known genetic etiologies for neutropenia or bone marrow failure were found. However, next-generation sequencing of germline samples from the patient revealed a novel, de novo germline stop-loss mutation in the X-linked gene SEPT6 that resulted in reduced SEPT6 staining in bone marrow granulocyte precursors and megakaryocytes. Patient skin fibroblast-derived induced pluripotent stem cells (iPSCs) produced reduced myeloid colonies, particularly of the granulocyte lineage. CRISPR/Cas9 knock-in of the patient's mutation or complete knock-out of SEPT6 was not tolerated in non-patient-derived iPSCs or human myeloid cell lines, but SEPT6 knock-out was successful in an erythroid cell line and resulting clones revealed a propensity to multinucleation. In silico analysis predicts that the mutated protein hinders the dimerization of SEPT6 coiled-coils in both parallel and antiparallel arrangements, which could in turn impair filament formation. These data demonstrate a critical role for SEPT6 in chromosomal segregation in myeloid progenitors that can account for the unusual predisposition to aneuploidy and dysmyelopoiesis.


Subject(s)
Genetic Diseases, X-Linked/genetics , Germ-Line Mutation , Myelodysplastic Syndromes/genetics , Neutropenia/congenital , Septins/genetics , Cell Line , Cells, Cultured , Genetic Diseases, X-Linked/complications , Humans , Infant, Newborn , Male , Myelodysplastic Syndromes/complications , Neutropenia/complications , Neutropenia/genetics , Tetraploidy
2.
J Clin Invest ; 126(10): 3868-3878, 2016 10 03.
Article in English | MEDLINE | ID: mdl-27599293

ABSTRACT

Reducing expression of the fetal hemoglobin (HbF) repressor BCL11A leads to a simultaneous increase in γ-globin expression and reduction in ß-globin expression. Thus, there is interest in targeting BCL11A as a treatment for ß-hemoglobinopathies, including sickle cell disease (SCD) and ß-thalassemia. Here, we found that using optimized shRNAs embedded within an miRNA (shRNAmiR) architecture to achieve ubiquitous knockdown of BCL11A profoundly impaired long-term engraftment of both human and mouse hematopoietic stem cells (HSCs) despite a reduction in nonspecific cellular toxicities. BCL11A knockdown was associated with a substantial increase in S/G2-phase human HSCs after engraftment into immunodeficient (NSG) mice, a phenotype that is associated with HSC exhaustion. Lineage-specific, shRNAmiR-mediated suppression of BCL11A in erythroid cells led to stable long-term engraftment of gene-modified cells. Transduced primary normal or SCD human HSCs expressing the lineage-specific BCL11A shRNAmiR gave rise to erythroid cells with up to 90% reduction of BCL11A protein. These erythrocytes demonstrated 60%-70% γ-chain expression (vs. < 10% for negative control) and a corresponding increase in HbF. Transplantation of gene-modified murine HSCs from Berkeley sickle cell mice led to a substantial improvement of sickle-associated hemolytic anemia and reticulocytosis, key pathophysiological biomarkers of SCD. These data form the basis for a clinical trial application for treating sickle cell disease.


Subject(s)
Anemia, Sickle Cell/therapy , Carrier Proteins/genetics , Hematopoiesis , Nuclear Proteins/genetics , Animals , Antigens, CD34/metabolism , Carrier Proteins/metabolism , Cell Lineage , Cells, Cultured , Gene Knockdown Techniques , Genetic Therapy , Graft vs Host Disease/prevention & control , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/physiology , Humans , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, SCID , Nuclear Proteins/metabolism , Phenotype , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Repressor Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...