Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 46(35): 11905-11912, 2017 Sep 12.
Article in English | MEDLINE | ID: mdl-28849828

ABSTRACT

A new synthesis method of samarium borohydride, Sm(BH4)2, using tetrahydrofuran borane, THF-BH3, and samarium hydride, SmH2, has been demonstrated and verified. The synthesised Sm(BH4)2 was mechanochemically treated with MBH4, M = K, Rb, Cs. Initially, the formation of KSm(BH4)3 is observed while subsequent heat treatment is necessary to form MSm(BH4)3, M = Rb, Cs. The new compounds crystallise in orthorhombic unit cells adopting perovskite-type 3D frameworks containing distorted [Sm(BH4)6] octahedra. In situ X-ray diffraction studies reveal two second-order polymorphic transitions of α-CsSm(BH4)3via a tetragonal intermediate, α'-CsSm(BH4)3, into a cubic high-temperature polymorph, ß-CsSm(BH4)3, resembling an ideal perovskite structure. The new compounds, MSm(BH4)3, are thermally stable up to T ∼ 280 °C after which they decompose into mainly MBH4, SmH2 and possibly SmB6 and SmB12H12. Finally, after three cycles of hydrogen release and uptake, the storage capacity was 1.0 wt% for KSm(BH4)3 and 0.84 wt% for RbSm(BH4)3 and CsSm(BH4)3.

2.
Phys Chem Chem Phys ; 18(39): 27545-27553, 2016 Oct 05.
Article in English | MEDLINE | ID: mdl-27722466

ABSTRACT

Metal borides are often decomposition products from metal borohydrides and thus play a role in the reverse reaction where hydrogen is absorbed. In this work, aluminium boride, AlB2, has been investigated as a boron source for the formation of borohydrides under hydrogen pressures of p(H2) = 100 or 600 bar at elevated temperatures (350 or 400 °C). The systems AlB2-MHx (M = Li, Na, Mg, Ca) have been investigated, producing LiBH4, NaBH4 and Ca(BH4)2, whereas the formation of Mg(BH4)2 was not observed at T = 400 °C and p(H2) = 600 bar. The formation of the metal borohydrides is confirmed by powder X-ray diffraction and infrared spectroscopy and the fraction of boron in AlB2 and M(BH4)x is determined quantitatively by 11B MAS NMR. Hydrogenation for 12 h at T = 350-400 °C and p(H2) = 600 bar leads to the formation of substantial amounts of LiBH4 (38.6 mol%), NaBH4 (83.0 mol%) and Ca(BH4)2 (43.6 mol%).

SELECTION OF CITATIONS
SEARCH DETAIL
...