Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Vaccines (Basel) ; 12(3)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38543929

ABSTRACT

In countries endemic for foot-and-mouth disease (FMD), routine or emergency vaccinations are strategic tools to control the infection. According to the WOAH/FAO guidelines, a prior estimation of vaccine effectiveness is recommendable to optimize control programs. This study reports the results of a small-scale immunogenicity study performed in Transcaucasian Countries. Polyvalent vaccines, including FMDV serotypes O, A (two topotypes) and Asia1 from two different manufacturers, were evaluated in Georgia, Azerbaijan and Armenia. Naïve large and small ruminants were vaccinated once and a subgroup received a second booster dose. The titers of neutralizing antibodies in sera collected sequentially up to 180 DPV were determined through the Virus Neutralization Test versus homologous strains. This study led to the estimate that both the vaccines evaluated will not induce a protective and long-lasting population immunity, even after a second vaccination, stressing that consecutive administrations of both vaccines every three months are mandatory if one aspires to achieve protective herd immunity.

2.
Mikrochim Acta ; 191(1): 9, 2023 12 06.
Article in English | MEDLINE | ID: mdl-38052755

ABSTRACT

Antigenic lateral flow immunoassays (LFIAs) rely on the non-competitive sandwich format, including a detection (labelled) antibody and a capture antibody immobilised onto the analytical membrane. When the same antibody is used for the capture and the detection (single epitope immunoassay), the saturation of analyte epitopes by the probe compromises the capture and lowers the sensitivity. Hence, several factors, including the amount of the probe, the antibody-to-label ratio, and the contact time between the probe and the analyte before reaching the capture antibody, must be adjusted. We explored different designs of experiments (full-factorial, optimal, sub-optimal models) to optimise a multiplex sandwich-type LFIA for the diagnosis and serotyping of two Southern African Territory (SAT) serotypes of the foot-and-mouth disease virus, and to evaluate the reduction of the number of experiments in the development. Both assays employed single epitope sandwich, so most influencing variables on the sensitivity were studied and individuated. We upgraded a previous device increasing the sensitivity by a factor of two and reached the visual limit of detection of 103.7 and 104.0 (TCID/mL) for SAT 1 and SAT 2, respectively. The positioning of the capture region along the LFIA strip was the most influent variable to increase the detectability. Furthermore, we confirmed that the 13-optimal DoE was the most convenient approach for designing the device.


Subject(s)
Foot-and-Mouth Disease Virus , Animals , Serogroup , Research Design , Immunoassay , Antigens , Antibodies , Epitopes
3.
Viruses ; 14(7)2022 07 08.
Article in English | MEDLINE | ID: mdl-35891476

ABSTRACT

Antibodies to the foot-and-mouth disease virus (FMDV) capsid induced by infection or vaccination can provide serotype-specific protection and be measured using virus neutralization tests and viral structural-protein (SP-)ELISAs. Separate tests are needed for each serotype, but cross-serotype reactions complicate serotyping. In this study, inter-serotypic responses were quantified for five SP-ELISA formats by testing 294 monovalent mainly bovine sera collected following infection, vaccination, or vaccination and infection with one of five serotypes of FMDV. Over half of the samples, representing all three immunization categories, scored positive for at least one heterologous serotype and some scored positive for all serotypes tested. A comparative approach to identifying the strongest reaction amongst serotypes O, A and Asia 1 improved the accuracy of serotyping to 73-100% depending on the serotype and test system, but this method will be undermined where animals have been infected and/or vaccinated with multiple FMDV serotypes. Preliminary studies with stabilized recombinant capsid antigens of serotypes O and A that do not expose internal epitopes showed reduced cross-reactivity, supporting the hypothesis that capsid integrity can affect the serotype-specificity of the SP-ELISAs. The residual cross-reactivity associated with capsid surface epitopes was consistent with the evidence of cross-serotype virus neutralization.


Subject(s)
Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Animals , Antibodies, Viral , Capsid Proteins/genetics , Cattle , Enzyme-Linked Immunosorbent Assay/methods , Epitopes , Serogroup
4.
Talanta ; 240: 123155, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-34942474

ABSTRACT

The foot-and-mouth disease (FMD) is the most important transboundary viral disease of livestock in the international context, because of its extreme contagiousness, widespread diffusion, and severe impact on animal trade and animal productions. The rapid and on-field detection of the virus responsible for the FMD represents an urgent demand to efficiently control the diffusion of the infection, especially in low resource setting where the FMD is endemic. Colorimetric lateral flow immunoassay (LFIA) is largely used for the development of rapid tests, due to the extreme simplicity, cost-effectiveness, and on-field operation. In this work, two multiplex LFIA devices were designed for the diagnosis of FMD and the simultaneous identification of major circulating serotypes of the FMD virus. The LFIAs relied on the sandwich-type immunoassay and combined a set of well-characterised monoclonal antibodies (mAb) pairs. One LFIA aimed at detecting and identifying O, A and Asia-1 serotypes, the second device enabled the detection and differentiation of the SAT 1 and SAT 2 serotypes. Both devices also incorporated a broad-specific test line reporting on infection from FMDV, regardless the strain and the serotype involved. Accordingly, five and four reactive zones were arranged in the two devices to achieve a total of six simultaneous analyses. The development of the two multiplex systems highlighted for the first time the relevance of the mAb positioning along the LFIA strip in connection with the use of the same or different mAb as capture and detector ligands. In fact, the excess of detector mAb typically employed for increasing the sensitivity of sandwich immunoassay induced a new type of hook effect when combined with the same ligand used as the capture. This effect strongly impacted assay sensitivity, which could be improved by an intelligent alignment of the mAb pairs along the LFIA strip. The analytical and diagnostic performances of the two LFIAs were studied by testing reference FMDV strains grown in cell cultures and some representative field samples (epithelium homogenates). Almost equivalent sensitivity and specificity to those of a reference Ag-ELISA kit were shown, except for the serotype SAT 2. These simple devices are suitable in endemic regions for in-field diagnosis of FMD accompanied by virus serotyping and, moreover, could be deployed and used for rapid confirmation of secondary outbreaks after FMD incursions in free-areas, thus contributing to promptly implement control measures.


Subject(s)
Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Animals , Antibodies, Monoclonal , Antibodies, Viral , Foot-and-Mouth Disease/diagnosis , Immunoassay , Serogroup
5.
Viruses ; 13(8)2021 08 10.
Article in English | MEDLINE | ID: mdl-34452448

ABSTRACT

Multiple serotypes and topotypes of foot-and-mouth disease virus (FMDV) circulate in endemic areas, posing considerable impacts locally. In addition, introductions into new areas are of great concern. Indeed, in recent years, multiple FMDV outbreaks, caused by topotypes that have escaped from their original areas, have been recorded in various parts of the world. In both cases, rapid and accurate diagnosis, including the identification of the serotype and topotype causing the given outbreaks, plays an important role in the implementation of the most effective and appropriate measures to control the spread of the disease. In the present study, we describe the performance of a range of diagnostic and typing tools for FMDV on a panel of vesicular samples collected in northern Tanzania (East Africa, EA) during 2012-2018. Specifically, we tested these samples with a real-time RT-PCR targeting 3D sequence for pan-FMDV detection; an FMDV monoclonal antibody-based antigen (Ag) detection and serotyping ELISA kit; virus isolation (VI) on LFBKαVß6 cell line; and a panel of four topotype-specific real-time RT-PCRs, specifically tailored for circulating strains in EA. The 3D real-time RT-PCR showed the highest diagnostic sensitivity, but it lacked typing capacity. Ag-ELISA detected and typed FMDV in 71% of sample homogenates, while VI combined with Ag-ELISA for typing showed an efficiency of 82%. The panel of topotype-specific real-time RT-PCRs identified and typed FMDV in 93% of samples. However, the SAT1 real-time RT-PCR had the highest (20%) failure rate. Briefly, topotype-specific real-time RT-PCRs had the highest serotyping capacity for EA FMDVs, although four assays were required, while the Ag-ELISA, which was less sensitive, was the most user-friendly, hence suitable for any laboratory level. In conclusion, when the four compared tests were used in combination, both the diagnostic and serotyping performances approached 100%.


Subject(s)
Clinical Laboratory Techniques/methods , Enzyme-Linked Immunosorbent Assay/methods , Foot-and-Mouth Disease Virus/classification , Foot-and-Mouth Disease Virus/genetics , Real-Time Polymerase Chain Reaction/methods , Serotyping/methods , Africa, Eastern , Animals , Antibodies, Viral , Clinical Laboratory Techniques/standards , Enzyme-Linked Immunosorbent Assay/standards , Foot-and-Mouth Disease/virology , Phylogeny , Real-Time Polymerase Chain Reaction/standards , Sensitivity and Specificity , Serogroup , Serotyping/standards
6.
Viruses ; 12(11)2020 11 20.
Article in English | MEDLINE | ID: mdl-33233870

ABSTRACT

During the last 25 years, swine vesicular disease (SVD) has occurred in Italy mostly sub-clinically. Therefore, regular testing of fecal samples from suspected holdings and high turnover premises was fundamental to identifying virus circulation and to achieve SVD eradication. In this study, we evaluated diagnostic performances of six genomic amplification methods, using positive fecal samples from 78 different outbreaks (1997-2014), which included different lineages. Comparison of three RT-PCRs, designed to amplify the same 154 nt portion of the gene 3D, demonstrated that a conventional and a real-time based on SYBR Green detection assay showed the highest diagnostic sensitivity, detecting all samples, while a real-time TaqMan-based test missed three cases, owing to two mismatches in the probe target sequence. Diagnostic and analytical specificities were optimal, as 300 negative field samples and other enteroviruses reacted negative. Three further evaluated tests, previously described, were a 3D-targeted reverse transcriptase loop-mediated isothermal amplification (RT-LAMP) and two real-time RT-PCRs targeted on the 5'UTR region. Here, the presence of multiple mismatches in probe and primers reduced the diagnostic performances, and two of the assays were unable to detect viruses from one sub-lineage. These results highlight that the choice of tests using less nucleotide targets significantly contributed to the success of the SVD eradication plan.


Subject(s)
Enterovirus B, Human/genetics , Genome, Viral , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Real-Time Polymerase Chain Reaction/methods , Swine Diseases/diagnosis , Animals , DNA Primers/genetics , Enterovirus B, Human/classification , Feces/virology , Italy/epidemiology , Phylogeny , RNA, Viral/genetics , Sensitivity and Specificity , Swine , Swine Diseases/virology
7.
Virol J ; 13(1): 193, 2016 11 28.
Article in English | MEDLINE | ID: mdl-27894321

ABSTRACT

BACKGROUND: The Encephalomyocarditis virus (EMCV) is a small, non enveloped, positive sense single-stranded RNA virus in the genus Cardiovirus, family Picornaviridae, with two known serotypes. It is spread worldwide and infects a huge range of vertebrate hosts with zoonotic potential for humans. The pig is the mammal most likely to be impacted on with the disease, but EMCV occurrence has also been reported in non-human primates and in a variety of domestic, captive and wild animals. Until now, human cases have been very rare and the risk appears to be almost negligible in spite of human susceptibility to the infection. CASE PRESENTATION: Between September and November 2012 a fatal Encephalomyocarditis virus outbreak involving four Barbary macaques and 24 crested porcupines occurred at a rescue centre for wild and exotic animals in Central Italy. In this open-field zoo park located near Grosseto, Tuscany about 1000 animals belonging to different species, including various non-human primates were hosted at that time. Sudden deaths were generally observed without any evident symptoms or only with mild nonspecific clinical signs. The major gross change was characterised by grey-white necrotic foci in the myocardium and the same EMCV strain was isolated both in macaques and crested porcupines. Phylogenetic analysis has confirmed that only one EMCV strain is circulating in Italy, capable of infecting different animal species. CONCLUSIONS: This report confirms the susceptibility of non-human primates to the EMCV infection and describes the disease in porcupine, a common wild Italian and African species. No human cases were observed, but given the zoonotic potential of EMCV these findings are of importance in the context of animal-human interface.


Subject(s)
Cardiovirus Infections/veterinary , Disease Outbreaks , Encephalomyocarditis virus/isolation & purification , Macaca , Porcupines , Primate Diseases/virology , Rodent Diseases/virology , Animals , Animals, Exotic , Animals, Zoo , Cardiovirus Infections/epidemiology , Cardiovirus Infections/virology , Italy/epidemiology , Primate Diseases/epidemiology , Rodent Diseases/epidemiology , Sequence Analysis, DNA
8.
PLoS One ; 7(11): e50744, 2012.
Article in English | MEDLINE | ID: mdl-23185643

ABSTRACT

Optical imaging through biological samples is compromised by tissue scattering and currently various approaches aim to overcome this limitation. In this paper we demonstrate that an all optical technique, based on non-linear upconversion of infrared ultrashort laser pulses and on multiple view acquisition, allows the reduction of scattering effects in tomographic imaging. This technique, namely Time-Gated Optical Projection Tomography (TGOPT), is used to reconstruct three dimensionally the internal structure of adult zebrafish without staining or clearing agents. This method extends the use of Optical Projection Tomography to optically diffusive samples yielding reconstructions with reduced artifacts, increased contrast and improved resolution with respect to those obtained with non-gated techniques. The paper shows that TGOPT is particularly suited for imaging the skeletal system and nervous structures of adult zebrafish.


Subject(s)
Animals, Genetically Modified/anatomy & histology , Artifacts , Bone and Bones/anatomy & histology , Nervous System/anatomy & histology , Tomography, Optical/methods , Zebrafish/anatomy & histology , Animals , Imaging, Three-Dimensional , Lasers , Light , Time Factors , Tomography, Optical/instrumentation , Zebrafish/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...