Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
PeerJ ; 9: e12287, 2021.
Article in English | MEDLINE | ID: mdl-34820162

ABSTRACT

North American watersheds contain a high diversity of freshwater mussels (Unionoida). During the long-lived, benthic phase of their life cycle, up to 40 species can co-occur in a single riffle and there is typically little evidence for major differences in their feeding ecology or microhabitat partitioning. In contrast, their brief parasitic larval phase involves the infection of a wide diversity of fish hosts and female mussels have evolved a spectrum of adaptations for infecting host fish with their offspring. Many species use a passive broadcast strategy: placing high numbers of larvae in the water column and relying on chance encounters with potential hosts. Many other species, including most members of the Lampsilini, have a proactive strategy that entails the use of prey-mimetic lures to change the behavior of the hosts, i.e., eliciting a feeding response through which they become infected. Two main lure types are collectively produced: mantle tissue lures (on the female's body) and brood lures, containing infective larvae, that are released into the external environment. In this study, we used a phylogenomic approach (ddRAD-seq) to place the diversity of infection strategies used by 54 North American lampsiline mussels into an evolutionary context. Ancestral state reconstruction recovered evidence for the early evolution of mantle lures in this clade, with brood lures and broadcast infection strategies both being independently derived twice. The most common infection strategy, occurring in our largest ingroup clade, is a mixed one in which mimetic mantle lures are apparently the predominant infection mechanism, but gravid females also release simple, non-mimetic brood lures at the end of the season. This mixed infection strategy clade shows some evidence of an increase in diversification rate and most members use centrarchids (Micropterus & Lepomis spp.) as their predominant fish hosts. Broad linkage between infection strategies and predominant fish host genera is also seen in other lampsiline clades: worm-like mantle lures of Toxolasma spp. with sunfish (Lepomis spp.); insect larvae-like brood lures (Ptychobranchus spp.), or mantle lures (Medionidus spp., Obovaria spp.), or mantle lures combined with host capture (Epioblasma spp.) with a spectrum of darter (Etheostoma & Percina spp.) and sculpin (Cottus spp.) hosts, and tethered brood lures (Hamiota spp.) with bass (Micropterus spp.). Our phylogenetic results confirm that discrete lampsiline mussel clades exhibit considerable specialization in the primary fish host clades their larvae parasitize, and in the host infection strategies they employ to do so. They are also consistent with the hypothesis that larval resource partitioning of fish hosts is an important factor in maintaining species diversity in mussel assemblages. We conclude that, taking their larval ecology and host-infection mechanisms into account, lampsiline mussels may be legitimately viewed as an adaptive radiation.

2.
Commun Biol ; 4(1): 744, 2021 06 15.
Article in English | MEDLINE | ID: mdl-34131271

ABSTRACT

Pacific Island land snails are highly endangered due in part to misguided biological control programs employing the alien predator Euglandina rosea. Its victims include the fabled Society Island partulid tree snail fauna, but a few members have avoided extirpation in the wild, including the distinctly white-shelled Partula hyalina. High albedo shell coloration can facilitate land snail survival in open, sunlit environments and we hypothesized that P. hyalina has a solar refuge from the predator. We developed a 2.2 × 4.8 × 2.4 mm smart solar sensor to test this hypothesis and found that extant P. hyalina populations on Tahiti are restricted to forest edge habitats, where they are routinely exposed to significantly higher solar radiation levels than those endured by the predator. Long-term survival of this species on Tahiti may require proactive conservation of its forest edge solar refugia and our study demonstrates the utility of miniaturized smart sensors in invertebrate ecology and conservation.


Subject(s)
Conservation of Natural Resources/methods , Sensory Aids , Smart Materials , Snails/physiology , Animals , Extinction, Biological , Food Chain , Polynesia , Trees
3.
BMC Evol Biol ; 14: 202, 2014 Sep 24.
Article in English | MEDLINE | ID: mdl-25249186

ABSTRACT

BACKGROUND: Partulid tree snails are endemic to Pacific high islands and have experienced extraordinary rates of extinction in recent decades. Although they collectively range across a 10,000 km swath of Oceania, half of the family's total species diversity is endemic to a single Eastern Pacific hot spot archipelago (the Society Islands) and all three partulid genera display highly distinctive distributions. Our goal was to investigate broad scale (range wide) and fine scale (within-Society Islands) molecular phylogenetic relationships of the two widespread genera, Partula and Samoana. What can such data tell us regarding the genesis of such divergent generic distribution patterns, and nominal species diversity levels across Oceania? RESULTS: Museum, captive (zoo) and contemporary field specimens enabled us to genotype 54 of the ~120 recognized species, including many extinct or extirpated taxa, from 14 archipelagoes. The genera Partula and Samoana are products of very distinct diversification processes. Originating at the western edge of the familial range, the derived genus Samoana is a relatively recent arrival in the far eastern archipelagoes (Society, Austral, Marquesas) where it exhibits a stepping-stone phylogenetic pattern and has proven adept at both intra-and inter- archipelago colonization. The pronounced east-west geographic disjunction exhibited by the genus Partula stems from a much older long-distance dispersal event and its high taxonomic diversity in the Society Islands is a product of a long history of within-archipelago diversification. CONCLUSIONS: The central importance of isolation for partulid lineage persistence and diversification is evident in time-calibrated phylogenetic trees that show that remote archipelagoes least impacted by continental biotas bear the oldest clades and/or the most speciose radiations. In contemporary Oceania, that isolation is being progressively undermined and these tree snails are now directly exposed to introduced continental predators throughout the family's range. Persistence of partulids in the wild will require proactive exclusion of alien predators in at least some designated refuge islands.


Subject(s)
Snails/classification , Snails/genetics , Animals , Biological Evolution , Pacific Islands , Phylogeny
4.
Proc Biol Sci ; 280(1765): 20131224, 2013 Aug 22.
Article in English | MEDLINE | ID: mdl-23825213

ABSTRACT

The relative roles of geographical and non-geographical barriers in the genesis of genetic isolation are highly debated in evolutionary biology, yet knowing how speciation occurs is essential to our understanding of biodiversity. In the open ocean, differentiating between the two is particularly difficult, because of the high levels of gene flow found in pelagic communities. Here, we use molecular phylogenetics to test the hypothesis that geography is the primary isolating mechanism in a clade of pelagic nudibranchs, Glaucinae. Our results contradict allopatric expectations: the cosmopolitan Glaucus atlanticus is panmictic, whereas the Indo-Pacific Glaucus marginatus contains two pairs of cryptic species with overlapping distributions. Within the G. marginatus species complex, a parallel reproductive change has occurred in each cryptic species pair: the loss of a bursa copulatrix. Available G. marginatus data are most consistent with non-geographical speciation events, but we cannot rule out the possibility of allopatric speciation, followed by iterative range extension and secondary overlap. Irrespective of ancestral range distributions, our results implicate a central role for reproductive character differentiation in glaucinin speciation-a novel result in a planktonic system.


Subject(s)
Gastropoda/anatomy & histology , Gastropoda/genetics , Phylogeny , Plankton/genetics , Animals , Biodiversity , DNA, Mitochondrial/genetics , Evolution, Molecular , Molecular Sequence Data , Oceans and Seas , Sequence Analysis, DNA , Species Specificity
5.
Mol Ecol ; 22(7): 1933-46, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23379611

ABSTRACT

The southern coast of Australia is composed of three distinct biogeographic provinces distinguished primarily by intertidal community composition. Several ecological mechanisms have been proposed to explain their formation and persistence, but no consensus has been reached. The marine clam Lasaea australis is arguably the most common bivalve on southern Australian rocky shores and occurs in all three provinces. Here, we tested if this species exhibits cryptic genetic structuring corresponding to the provinces and if so, what mechanisms potentially drove its divergence. Variation in two mitochondrial genes (16S and COIII) and one nuclear gene (ITS2) was assayed to test for genetic structuring and to reconstruct the clam's phylogenetic history. Our results showed that L. australis is comprised of three cryptic mitochondrial clades, each corresponding almost perfectly to one of the three biogeographic provinces. Divergence time estimates place their cladogenesis in the Neogene. The trident-like topology and Neogene time frame of L. australis cladogenesis are incongruent with Quaternary vicariance predictions: a two-clade topology produced by Pleistocene Bass Strait land bridge formation. We hypothesize that the interaction of the Middle Miocene Climate Transition with the specific geography of the southern coastline of Australia was the primary cladogenic driver in this clam lineage. Additional in-depth studies of the endemic southern Australian marine biota across all three provinces are needed to establish the generality of this proposed older framework for regional cladogenesis.


Subject(s)
Bivalvia/classification , Bivalvia/genetics , Phylogeny , Animals , Australia , Climate , DNA, Mitochondrial/genetics , Evolution, Molecular , Genetic Speciation , Genetic Variation , Molecular Sequence Data , Phylogeography , Sequence Analysis, DNA
6.
PLoS One ; 7(8): e42121, 2012.
Article in English | MEDLINE | ID: mdl-22905116

ABSTRACT

BACKGROUND: Marine lineage diversification is shaped by the interaction of biotic and abiotic factors but our understanding of their relative roles is underdeveloped. The megadiverse bivalve superfamily Galeommatoidea represents a promising study system to address this issue. It is composed of small-bodied clams that are either free-living or have commensal associations with invertebrate hosts. To test if the evolution of this lifestyle dichotomy is correlated with specific ecologies, we have performed a statistical analysis on the lifestyle and habitat preference of 121 species based on 90 source documents. METHODOLOGY/PRINCIPAL FINDINGS: Galeommatoidea has significant diversity in the two primary benthic habitats: hard- and soft-bottoms. Hard-bottom dwellers are overwhelmingly free-living, typically hidden within crevices of rocks/coral heads/encrusting epifauna. In contrast, species in soft-bottom habitats are almost exclusively infaunal commensals. These infaunal biotic associations may involve direct attachment to a host, or clustering around its tube/burrow, but all commensals locate within the oxygenated sediment envelope produced by the host's bioturbation. CONCLUSIONS/SIGNIFICANCE: the formation of commensal associations by Galeommatoidean clams is robustly correlated with an abiotic environmental setting: living in sediments (P < 0.001). Sediment-dwelling bivalves are exposed to intense predation pressure that drops markedly with depth of burial. Commensal galeommatoideans routinely attain depth refuges many times their body lengths, independent of siphonal investment, by virtue of their host's burrowing and bioturbation. In effect, they use their much larger hosts as giant auto-irrigating siphon substitutes. The evolution of biotic associations with infaunal bioturbating hosts may have been a prerequisite for the diversification of Galeommatoidea in sediments and has likely been a key factor in the success of this exceptionally diverse bivalve superfamily.


Subject(s)
Bivalvia/physiology , Ecology/methods , Geologic Sediments , Animals , Biodiversity , Biological Evolution , Conservation of Natural Resources , Ecosystem , Oxygen/chemistry , Species Specificity
7.
Proc Biol Sci ; 274(1627): 2907-14, 2007 Nov 22.
Article in English | MEDLINE | ID: mdl-17848368

ABSTRACT

Inter-archipelago exchange networks were an important aspect of prehistoric Polynesian societies. We report here a novel genetic characterization of a prehistoric exchange network involving an endemic Pacific island tree snail, Partula hyalina. It occurs in the Society (Tahiti only), Austral and Southern Cook Islands. Our genetic data, based on museum, captive and wild-caught samples, establish Tahiti as the source island. The source lineage is polymorphic in shell coloration and contains a second nominal species, the dark-shelled Partula clara, in addition to the white-shelled P. hyalina. Prehistoric inter-island introductions were non-random: they involved white-shelled snails only and were exclusively inter-archipelago in scope. Partulid shells were commonly used in regional Polynesian jewellery, and we propose that the white-shelled P. hyalina, originally restricted to Tahiti, had aesthetic value throughout these archipelagoes. Demand within the Society Islands could be best met by trading dead shells, but a low rate of inter-archipelago exchange may have prompted the establishment of multiple founder populations in the Australs and Southern Cooks. The alien carnivorous land snail Euglandina rosea has recently devastated populations of all 61 endemic species of Society Island partulid snails. Southern Cooks and Australs P. hyalina now represent the only unscathed wild populations remaining of this once spectacular land snail radiation.


Subject(s)
Conservation of Natural Resources , Snails/classification , Animals , Commerce , DNA, Mitochondrial/chemistry , Haplotypes , Humans , Likelihood Functions , Polynesia , Snails/genetics , Social Behavior
8.
Mol Phylogenet Evol ; 40(2): 501-16, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16678447

ABSTRACT

The North American freshwater limpet genus Laevapex (Walker, 1903) is a ubiquitous inhabitant of lentic and slow-moving lotic habitats east of the Rocky Mountains, but uncertainty clouds its systematic affinities, the phylogenetic validity of its constituent nominal species, and its degree of genetic connectivity among drainages. We addressed these issues by sampling the genus throughout much of its collective range and constructing representative nuclear and mitochondrial (mt) gene trees, in addition to performing morphometric analyses of shell shape variation. Our results identify neotropical Gundlachia and South American Uncancylus as sister lineages for Laevapex and reveal a pronounced sub-familial dichotomy within the Ancylidae, separating these three New World genera from a Holarctic (Ferrissia (Ancylus, Rhodacmea)) sister clade. Five nominal taxa (L. fuscus, L. diaphanus, L. peninsulae, L. sp., and "F."arkansasensis), indistinguishable in our morphometric analyses, were polyphyletic in the mt gene trees, exhibited modest levels (< 3.9%) of genetic divergence in the primary (103 of 109 individuals) mt clade and, with one minor exception, they appeared fixed for a single nuclear ITS-2 genotype. Although complicated by the presence of rare, highly divergent mt lineages (of either introgressive or persistent ancestral polymorphic origin) in some populations, the molecular data were consistent with a taxonomic conclusion that these five nominal taxa represent a single polymorphic lineage of the type species L. fuscus. AMOVA analyses indicated that 56% of the observed mt variation could be attributed to among population differences, only two of 36 haplotypes were detected in more than one sampling location, and estimates of among-population mt gene flow were generally low at both regional and continental scales. Unrooted network analyses revealed a number of mt tip clades, one restricted to the southwestern part of the range, the remainder having overlapping distributions in eastern North America. All of the eastern tip clades occurred in the Mid-Atlantic region, and these samples displayed by far the highest levels of collective mt diversity. However, directional gene flow estimates indicated that this region has been a recipient (especially from Alabama populations), rather than a source of haplotypic diversity, implying that it likely represents a center of overlap, not a primary ice age refugium, for this limpet species.


Subject(s)
Fresh Water , Gastropoda/genetics , Phylogeny , Amino Acid Sequence , Animals , Base Sequence , Canada , DNA, Ribosomal/genetics , Gastropoda/anatomy & histology , Gastropoda/chemistry , Gastropoda/classification , Genotype , Haplotypes/genetics , Molecular Sequence Data , Sequence Alignment , United States
9.
Evolution ; 59(10): 2139-58, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16405159

ABSTRACT

The well-documented Floridian Gulf/Atlantic marine genetic disjunction provides an influential example of presumed vicariant cladogenesis along a continental coastline for major elements of a diverse nearshore fauna. However, it is unclear if this disjunction represents a local anomaly for regionally distributed morphospecies, or if it is merely one of many such cryptic phylogenetic splits that underlay their assumed genetic cohesiveness. We aimed to place the previously characterized scorched mussel Gulf/Atlantic genetic disjunction into a regional phylogenetic perspective by incorporating genotypes of nominal conspecifics sampled throughout the Caribbean Basin as well as those of eastern Pacific potential geminate species. Our results show it to be one of multiple latent regional genetic disjunctions, involving five cryptic Caribbean species, that appear to be the product of a long history of regional cladogenesis. Disjunctions involving three stem lineages clearly predate formation of the Isthmus of Panama and of the Caribbean Sea, although four of the five cryptic species have within-basin sister relationships. Surprisingly, the Atlantic clade was also found to be widespread in the southern Caribbean, and ancestral demography calculations through time for Atlantic coast-specific genotypes are consistent with a northward range extension after the last glacial maximum. Our new data seriously undermine the hypothesis of a Floridian vicariant genesis and imply that the scorched mussel Gulf/Atlantic disjunction represents a case of geographic and temporal pseudocongruence. All five Caribbean Basin cryptic species exhibited an intriguing pattern of predominantly allopatric distribution characterized by distinct geographic areas of ecological dominance, often adjoining those of sister taxa. This pattern of distribution is consistent with allopatric speciation origins, coupled with restricted postspeciation range extensions. Several lines of indirect evidence favor the hypothesis that the predominantly allopatric distributions are maintained over evolutionary time scales, primarily by postrecruitment ecological filters rather than by oceanographic barriers to larval-mediated gene flow.


Subject(s)
Evolution, Molecular , Mytilidae/genetics , Phylogeny , Animals , Atlantic Ocean , Caribbean Region , Florida , Genotype , Geography , Pacific Ocean , Panama , Sequence Analysis, DNA
10.
Mol Phylogenet Evol ; 30(3): 527-44, 2004 Mar.
Article in English | MEDLINE | ID: mdl-15012937

ABSTRACT

The Goodeinae is a speciose group of viviparous freshwater fishes endemic to the Mesa Central of Mexico. The current taxonomy of the group is based on morphology associated with viviparity and several of the groupings are questionable. We sequenced part of the mitochondrial cytochrome c oxidase subunit I (COI) gene (627bp) and control region (approximately 430bp aligned) of representatives of 36 species (all genera) of goodeid fishes in order to establish phylogenetic relationships among the taxa. Findings support the monophyly of the Goodeidae, the sister-group relationship of the Empetrichthyinae and Goodeinae, and the relationship of Profundulus to the Goodeidae. All goodeine genera but Xenotoca were recovered as monophyletic. Many of the higher-level relationships within the group contradict the findings of previous studies based upon morphology. The rate of molecular change in COI (0.9% per Myr), calibrated with the fossil record and geological data, suggests an approximate age for the Goodeidae of 16.5Myr. The majority of divergence within the Goodeinae appears to have occurred during the Miocene, with subsequent cladogenesis in the Pliocene and Pleistocene. Most recent speciation appears allopatric. River piracy, particularly involving the Rio Ameca basin, has played a significant role in the diversification of the Goodeinae.


Subject(s)
Cyprinodontiformes/genetics , Animals , Classification , DNA/metabolism , DNA, Mitochondrial/genetics , Electron Transport Complex IV/genetics , Evolution, Molecular , Fossils , Mexico , Phylogeny , Species Specificity
11.
Mol Phylogenet Evol ; 25(1): 112-24, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12383755

ABSTRACT

Although polyploidization is rare among bivalve mollusks, recent cytogenetic studies have revealed a remarkable degree of genome amplification (up to 13n) in the freshwater bivalve family Sphaeriidae. We generated single-copy nuclear gene trees in order to test hypotheses addressing the evolutionary origins of sphaeriid genome duplication. Polyploid North American members of three cosmopolitan sphaeriid genera (Sphaerium, Musculium, and Pisidium) were characterized for their expressed allelic repertoire of a 526 nt c-DNA fragment of 6-phosphogluconate dehydrogenase (PGD). Pronounced levels of intra-individual genetic variation were uncovered in most of the polyploid taxa and a minority of alleles showed strong evidence of recombination. Phylogenetic analyses resolved polyploid sphaeriid PGD alleles into two clades (A, B), each of which contained a subsample of intra-individual allelic diversity of the genus Sphaerium. These two clades were also recovered in Musculium, however one (B) is represented here by a single recombinant allele. With the exception of a divergent segment in one putatively recombinant allele, the expressed PGD repertoire of the three Pisidium species investigated was restricted to one of the two clades (A). Major within-clade PGD gene tree branching patterns were congruent with mitochondrial gene tree topologies for these taxa. These results are inconsistent with a pattern of recent independent attainment of a polyploid status by our Sphaerium/Musculium study taxa and indicate that they may share a common genome duplication event predating the Miocene appearance of these two genera in the fossil record.


Subject(s)
Alleles , Mollusca/genetics , Phosphogluconate Dehydrogenase/genetics , Phylogeny , Polyploidy , Animals , Base Sequence , DNA, Complementary/chemistry , DNA, Complementary/genetics , Evolution, Molecular , Molecular Sequence Data , Mollusca/classification , Recombination, Genetic , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid
12.
Evolution ; 49(1): 140-150, 1995 Feb.
Article in English | MEDLINE | ID: mdl-28593668

ABSTRACT

The marine clam genus Lasaea is unique among marine bivalves in that it contains both sexual and asexual lineages. We employed molecular tools to infer intrageneric relationships of geographically restricted sexual versus cosmopolitan asexual forms. Polymerase chain reaction primers were used to amplify and sequence homologous 624 nucleotide fragments of COIII from polyploid, asexual, direct-developing individuals representing northeastern Pacific, northeastern Atlantic, Mediterranean, southern Indian Ocean, and Australian populations. DNA sequences also were obtained from the two known diploid congeners, the Australian sexual, indirect developer, Lasaea australis, and an undescribed meiotic Australian direct developer. Estimated tree topologies did not support monophyly for polyploid asexual Lasaea lineages. A robust dichotomy was evident in all phylogenetic trees and each of the two main branches included one of the diploid meitoic Australian congeners. Lasaea australis clustered with two of the direct-developing, polyploid asexual haplotypes, one from Australia, the other from the northeastern Atlantic. Monophyly is supported for the diploid Australian direct-developing lineage together with the remaining polyploid asexual lineages from the northeastern Pacific, northeastern Atlantic, Mediterranean, and southern Indian Ocean. These results indicate that asexual Lasaea lineages are polyphyletic and may have resulted from multiple hybridization events. The high degree of genetic divergence of asexual lineages from co-clustering meiotic congeners (16%-22%) and among geographically restricted monophyletic clones (9%-11%) suggests that asexual Lasaea lineages may be exceptionally long lived.

SELECTION OF CITATIONS
SEARCH DETAIL
...